Volume 44 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
Huang Zhucheng, Shu Yang, Li Yixin, Tang Tingting, Xie Chenxi. Biomass pyrolysis product-enhanced selective reduction-magnetic separation of iron sand[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 16-22. doi: 10.7513/j.issn.1004-7638.2023.03.003
Citation: Huang Zhucheng, Shu Yang, Li Yixin, Tang Tingting, Xie Chenxi. Biomass pyrolysis product-enhanced selective reduction-magnetic separation of iron sand[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 16-22. doi: 10.7513/j.issn.1004-7638.2023.03.003

Biomass pyrolysis product-enhanced selective reduction-magnetic separation of iron sand

doi: 10.7513/j.issn.1004-7638.2023.03.003
  • Received Date: 2023-03-16
  • Publish Date: 2023-06-30
  • Using clean, carbon neutral, highly reactive and renewable biomass as a reducing agent, limiting the escape of pyrolysis products by hermetic gas plugs, the direct reduction behavior of the biomass allotted within the iron sand was studied. The results show that a pressure of 60 kPa is rapidly developed in the reaction tank as a result of limiting the escape of pyrolysis products (CO、H2、CO2、H2O 、CxHyOz) from biomass pyrolysis, which facilitates the participation of H2, CO in the reduction. The tar has higher activity and guarantees the source of H2 in the later stage, which promotes the rapid reduction of iron sand at low temperature. Under the conditions of reduction temperature of 1120 °C and reduction for 80 min, the iron powder with 97.81% metallization and 97.81% Fe recovery can be obtained, as well as the titanium-rich slag with a TiO2 recovery of 69.98% and a V2O5 recovery of 59.93%.
  • loading
  • [1]
    Bai Fenglong, He Yongjun, Li Jun. Exploration, mining and sustainable development of sea sand resources in China[J]. Mineral Deposits, 2010,29(S1):771−772. (白凤龙, 何拥军, 李军. 中国海砂资源勘查、开采与可持续发展[J]. 矿床地质, 2010,29(S1):771−772. doi: 10.16111/j.0258-7106.2010.s1.557

    Bai Fenglong, He Yongjun, Li Jun. Exploration, mining and sustainable development of sea sand resources in China[J]. Mineral Deposits, 2010, 29(S1): 771-772. doi: 10.16111/j.0258-7106.2010.s1.557
    [2]
    Li Xingyun. Study on the exploitation, utilization and ownership management of sea sand resources at home and abroad[J]. Co-Operative Economy & Science, 2018,(24):49−51. (李杏筠. 国内外海砂资源开采利用与权属管理探讨[J]. 合作经济与科技, 2018,(24):49−51. doi: 10.3969/j.issn.1672-190X.2018.24.018

    Li Xingyun. Study on the exploitation, utilization and ownership management of sea sand resources at home and abroad[J]. Co-Operative Economy & Science, 2018(24): 49-51. doi: 10.3969/j.issn.1672-190X.2018.24.018
    [3]
    Sun Lijun, Lv Xianjun, Chen Ping, et al. Experimental study on the mineralogical characteristics and processing technique of beach placer[J]. Mining Research and Development, 2010,30(2):62−65. (孙丽君, 吕宪俊, 陈平, 等. 某海滨砂矿的矿物学特征与选矿试验研究[J]. 矿业研究与开发, 2010,30(2):62−65. doi: 10.13827/j.cnki.kyyk.2010.02.013

    Sun Lijun, Lu Xianjun, Chen Ping, et al. Experimental study on the mineralogical characteristics and processing technique of beach placer[J]. Mining Research and Development, 2010, 30(2): 62-65. doi: 10.13827/j.cnki.kyyk.2010.02.013
    [4]
    Liu Zhangzheng, Cao Zhicheng, Peng Cheng, et al. Study on direct reduction of sea sand ore containing vanadium and titanium by rotary hearth furnace[J]. Conservation and Utilization of Mineral Resources, 2020,40(4):52−57. (刘长正, 曹志成, 彭程, 等. 钒钛海砂矿转底炉直接还原研究[J]. 矿产保护与利用, 2020,40(4):52−57. doi: 10.13779/j.cnki.issn1001-0076.2020.07.008

    Liu Zhangzheng, Cao Zhicheng, Peng Cheng, et al. Study on direct reduction of sea sand ore containing vanadium and titanium by rotary hearth furnace[J]. Conservation and Utilization of Mineral Resources, 2020, 40(04): 52-57. doi: 10.13779/j.cnki.issn1001-0076.2020.07.008
    [5]
    Yan Fangxing, Zhang Qifu, Cao Chaozhen, et al. Experimental study on direct reduction of vanadium and titanium-bearing sea sand ore pellets in gas-based shaft furnace[J]. Iron Steel Vanadium Titanium, 2020,41(4):7−11. (闫方兴, 章启夫, 曹朝真, 等. 气基竖炉用含钒钛海滨砂矿球团直接还原试验研究[J]. 钢铁钒钛, 2020,41(4):7−11. doi: 10.7513/j.issn.1004-7638.2020.04.002

    Yan Fangxing, Zhang Qifu, Cao Chaozhen, et al. Experimental study on direct reduction of vanadium and titanium-bearing sea sand ore pellets in gas-based shaft furnace[J]. Iron Steel Vanadium Titanium, 2020, 41(4): 7-11. doi: 10.7513/j.issn.1004-7638.2020.04.002
    [6]
    Hu Bing, Xie Zhicheng, Huang Zhucheng, et al. A new process for rapid direct reduction by low temperature of marine placer containing vanadic titanomagnetite[J]. Sintering and Pelletizing, 2020,45(6):16−22. (胡兵, 谢志诚, 黄柱成, 等. 钒钛磁铁海砂矿低温快速直接还原新工艺[J]. 烧结球团, 2020,45(6):16−22. doi: 10.13403/j.sjqt.2020.06.078

    Hu Bing, Xie Zhicheng, Huang Zhucheng, et al. A new process for rapid direct reduction by low temperature of marine placer containing vanadic titanomagnetite[J]. Sintering and Pelletizing, 2020, 45(6): 16-22. doi: 10.13403/j.sjqt.2020.06.078
    [7]
    Hu Chengfei, Yi Lingyun, Zhang Nan, et al. Mechanism for reduction-separation of indonesia iron sand intensified by pre-oxidation treatment[J]. Mining and Metallurgical Engineering, 2021,41(6):161−166. (胡程飞, 易凌云, 张楠, 等. 预氧化强化印尼海砂矿还原分离及机理研究[J]. 矿冶工程, 2021,41(6):161−166. doi: 10.3969/j.issn.0253-6099.2021.06.039

    Hu Chengfei, Yi Lingyun, Zhang Nan, et al. Mechanism for reduction-separation of indonesia iron sand intensified by pre-oxidation treatment[J]. Mining and Metallurgical Engineering, 2021, 41(6): 161-166. doi: 10.3969/j.issn.0253-6099.2021.06.039
    [8]
    Taylor P R, Shuey S A, Vidal E E, et al. Extractive metallurgy of vanadium-containing titaniferous magnetite ores: a review[J]. Mining, Metallurgy & Exploration, 2006,23(2):80−86.
    [9]
    Ghiyats Muhammad Faris, Maksum Ahmad, Soedarsono Johny Wahyuadi. Preliminary study on the use of rice husk as a reducing agent in iron sand reduction[J]. IOP Conference Series:Materials Science and Engineering, 2019,553:12036. doi: 10.1088/1757-899X/553/1/012036
    [10]
    Geng Chao, Sun Tichang, Yang Huifen, et al. Effect of additives on titanium and iron separation from beach titanomagnetite by direct reduction followed by magnetic separation[J]. The Chinese Journal of Nonferrous Metals, 2017,27(8):1720−1728. (耿超, 孙体昌, 杨慧芬, 等. 添加剂对海滨钛磁铁矿直接还原磁选钛铁分离的影响[J]. 中国有色金属学报, 2017,27(8):1720−1728. doi: 10.19476/j.ysxb.1004.0609.2017.08.23

    Geng Chao, Sun Tichang, Yang Huifen, et al. Effect of additives on titanium and iron separation from beach titanomagnetite by direct reduction followed by magnetic separation[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(8): 1720-1728. doi: 10.19476/j.ysxb.1004.0609.2017.08.23
    [11]
    Liu Songli, Bai Chenguang. Technology research and development trend of direct reduction[J]. Journal of Iron and Steel Research, 2011,23(3):1−5. (刘松利, 白晨光. 直接还原技术的进展与展望[J]. 钢铁研究学报, 2011,23(3):1−5. doi: 10.13228/j.boyuan.issn1001-0963.2011.03.009

    Liu Songli, Bai Chenguang. Technology research and development trend of direct reduction[J]. Journal of Iron and Steel Research, 2011, 23(3): 1-5. doi: 10.13228/j.boyuan.issn1001-0963.2011.03.009
    [12]
    Maurício C Bagatini, Tao Kan, Tim J Evans, et al. Iron ore reduction by biomass volatiles[J]. Journal of Sustainable Metallurgy, 2021,(prepublish):215−226.
    [13]
    Huang Zhucheng, Cai Wei, Yi Lingyun, et al. Conversion characteristics of biomass gasification using vanadium titanomagnetite as oxygen carrier[J]. The Chinese Journal of Nonferrous Metals, 2020,30(12):2980−2988. (黄柱成, 蔡威, 易凌云, 等. 钒钛磁铁矿为氧载体的生物质气化转化特性[J]. 中国有色金属学报, 2020,30(12):2980−2988. doi: 10.11817/j.ysxb.1004.0609.2020-36481

    Huang Zhucheng, Cai Wei, Yi Lingyun, et al. Conversion characteristics of biomass gasification using vanadium titanomagnetite as oxygen carrier[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(12): 2980-2988. doi: 10.11817/j.ysxb.1004.0609.2020-36481
    [14]
    Guo Dabin, Hu Mian, Pu Chengxi, et al. Kinetics and mechanisms of direct reduction of iron ore-biomass composite pellets with hydrogen gas[J]. International Journal of Hydrogen Energy, 2015,40(14):4733−4740. doi: 10.1016/j.ijhydene.2015.02.065
    [15]
    Chen Wenxuan, Liu Peng, Li Xueqin, et al. Research progress of catalytic cracking catalysts for biomass tar[J]. China Forest Products Industry, 2022,59(3):41−48. (陈文轩, 刘鹏, 李学琴, 等. 生物质焦油催化裂解催化剂的研究进展[J]. 林产工业, 2022,59(3):41−48.

    Chen Wenxuan, Liu Peng, Li Xueqin, et al. Research progress of catalytic cracking catalysts for biomass tar[J]. China Forest Products Industry, 2022, 59(3): 41-48.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views (96) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return