Volume 44 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
Pu Hong, Zhang Huan. Preparation of titania with high surface area by industrial titanyl sulfate solution and its properties study[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 33-38. doi: 10.7513/j.issn.1004-7638.2023.03.005
Citation: Pu Hong, Zhang Huan. Preparation of titania with high surface area by industrial titanyl sulfate solution and its properties study[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 33-38. doi: 10.7513/j.issn.1004-7638.2023.03.005

Preparation of titania with high surface area by industrial titanyl sulfate solution and its properties study

doi: 10.7513/j.issn.1004-7638.2023.03.005
  • Received Date: 2022-12-16
  • Publish Date: 2023-06-30
  • Titania with high surface area was prepared by hydrothermal method using industrial titanyl sulfate solution as raw material. The influence of hydrothermal reaction time and calcination temperature on the specific surface area of titania were investigated. The samples were characterized by BET, XRD, XPS, SEM, TEM, FT-IR, UV-Vis DRS and the visible photocatalytic activity was evaluated by the degradation of model compound Rhodamine B. The results show that the proper hydrothermal reaction time and low calcination temperature are beneficial to the preparation of titania with high specific surface area. The titania obtained by hydrothermal reaction for 3 h and calcination temperature at 300 ℃ has the highest specific surface area, up to 214.3 m2/g. And the visible light degradation activity of Rhodamine B is significantly better than that of commercial titanium dioxide P25, which is because the prepared titania has a higher specific surface area and better visible light absorption, its degradation rate reached 90.3% in 2 h.
  • loading
  • [1]
    Zhang H, Zhang H, Zhu P, et al. Morphological effect in photocatalytic degradation of direct blue over mesoporous TiO2 catalysts[J]. Chemistry Select, 2017,(2):3282−3288.
    [2]
    Ali A M, Emanuelsson E A C. Conventional versus lattice photocatalysed reactions: Implications of the lattice oxygen participation in the liquid phase photocatalytic oxidation with nanostructured ZnO thin films on reaction products and mechanism at both 254 nm and 340 nm[J]. Appl. Catal. B:Environ., 2011,106:323−336. doi: 10.1016/j.apcatb.2011.05.033
    [3]
    Kurnaravel V, Mathew S, Bartlett J, et al. Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances[J]. Appl. Catal. B:Environ., 2019,244:1021−1064. doi: 10.1016/j.apcatb.2018.11.080
    [4]
    Do H H, Nguyen D L T, Nguyen X C, et al. Recent progress in TiO2-based photocatalysts for hydrogen evolution reaction: A review[J]. Arab. J. Chem., 2020,13:3653−3671. doi: 10.1016/j.arabjc.2019.12.012
    [5]
    Malato S, Blanco J, Alarćon D C, et al. Photocatalytic decontamination and disinfection of water with solar collectors[J]. Catal. Today, 2007,122:137−149. doi: 10.1016/j.cattod.2007.01.034
    [6]
    Wang X, Wang X J, Zhao J F, et al. Solar light-driven photocatalytic destruction of cyanobacteria by F-Ce-TiO2/expanded perlite floating composites[J]. Chem. Eng. J., 2017,320:253−263. doi: 10.1016/j.cej.2017.03.062
    [7]
    Wang X, Hu R, Lei Y, et al. Highly efficient and selective photocatalytic CO2 reduction based on water-soluble CdS QDs modified by the mixed ligands in one pot[J]. Catalysis Science & Technology, 2020,10(9):2821−2829.
    [8]
    Li H, Gao Y, Xiong Z, et al. Enhanced selective photocatalytic reduction of CO2 to CH4 over plasmonic Au modified g-C3N4 photocatalyst under UV-vis light irradiation[J]. Applied Surface Science, 2018,439:552−559. doi: 10.1016/j.apsusc.2018.01.071
    [9]
    Chen Dongjie, Cheng Yanling, Zhou Nan, et al. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review[J]. Journal of Cleaner Production, 2020,268:121725. doi: 10.1016/j.jclepro.2020.121725
    [10]
    Mo Zhangchao, Zhu Fang, Fu Mengyu, et al. Preparation and characterization of a high surface area titanium dioxide nano-microspheres[J]. Journal of Anhui University of Technology (Natural Science), 2020,37(3):236−240. (莫章超, 朱芳, 付梦雨, 等. 一种高比表面积二氧化钛纳米微球的制备与表征[J]. 安徽工业大学学报(自然科学版), 2020,37(3):236−240.

    Mo Zhangchao, Zhu Fang, Fu Mengyu, et al. Preparation and characterization of a high surface area titanium dioxide nano-microspheres[J]. J. of Anhui University of Technology (Natural Science), 2020, 37(3): 236-240.
    [11]
    Long Caiyan, Liu Chengchao, Zhao Yanxi, et al. Preparation of mesoporous TiO2 with high surface area and study on the performance of Fischer-Tropsch synthesis of supported cobalt catalyst[J]. Journal of Molecular Science, 2020,36(3):205−211. (龙彩燕, 刘成超, 赵燕熹, 等. 高比表面积介孔TiO2的制备及负载钴基催化剂费-托合成反应性能研究[J]. 分子科学学报, 2020,36(3):205−211.

    Long Caiyan, Liu Chengchao, Zhao Yanxi, et al. Preparation of mesoporous TiO2 with high surface area and study on the performance of Fischer-Tropsch synthesis of supported cobalt catalyst[J]. Journal of Molecular Science, 2020, 36(3): 205-211.
    [12]
    Chen Xiaoyun, Lu Dongfang, Tan Fei, et al. Synthesis and photocatalytic activity of mesoporous TiO2 from ionic liquid-water solvent mixture[J]. Transactions of Materials and Heat Treatment, 2013,34(10):17−24. (陈孝云, 陆东芳, 谭非, 等. 离子液体-水混合介质中合成介孔TiO2及光催化活性[J]. 材料热处理学报, 2013,34(10):17−24.

    Chen Xiaoyun, Lu Dongfang, Tan fei, et al. Synthesis and photocatalytic activity of mesoporous TiO2 from ionic liquid-water solvent mixture[J]. Transactions of Materials and Heat Treatment, 2013, 34(10): 17-24.
    [13]
    Yang Huanping, Peng Tianyou, Xiao Jiangrong, et al. Synthesis and characterization of porous anatase titania with high thermal stability[J]. Journal of Wuhan University (Natural Science Edition), 2006,52(4):415−420. (杨焕平, 彭天右, 肖江蓉, 等. 高热稳定的多孔锐钛矿二氧化钛的制备及表征[J]. 武汉大学学报(理学版), 2006,52(4):415−420. doi: 10.14188/j.1671-8836.2006.04.007

    Yang Huanping, Peng Tianyou, Xiao Jiangrong, et al. Synthesis and characterization of porous anatase titania with high thermal stability[J]. Journal of Wuhan University (Natural Science Edition), 2006, 52(4): 415-420. doi: 10.14188/j.1671-8836.2006.04.007
    [14]
    Yang Yujiao, Wang Xiao, Wang Gang, et al. Preparation of hollow microspheres of titania with nanosheets by alkaline hydrothermal method[J]. Journal of the Chinese Ceramic Society, 2014,42(10):1219−1224. (杨玉娇, 王啸, 王刚, 等. 水热法制备大比表面积二氧化钛纳米片空心微球[J]. 硅酸盐学报, 2014,42(10):1219−1224. doi: 10.7521/j.issn.0454-5648.2014.10.01

    Yang Yujiao, Wang Xiao, Wang Gang, et al. Preparation of hollow microspheres of titania with nanosheets by alkaline hydrothermal method[J]. Journal of the Chinese Ceramic Society, 2014, 42(10): 1219-1224. doi: 10.7521/j.issn.0454-5648.2014.10.01
    [15]
    Yu J, Xiang Q, Zhou M. Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures[J]. Appl. Catal. B:Environ., 2009,90:595−602. doi: 10.1016/j.apcatb.2009.04.021
    [16]
    Tayade R J, Surolia P K, Lazar M A, et al. Enhanced photocatalytic activity by silver metal ion exchanged NaY zeolite photocatalysts for the degradation of organic contaminants and dyes in aqueous medium[J]. Ind. Eng. Chem. Res., 2008,47:7545−7551. doi: 10.1021/ie800441c
    [17]
    Krishnan P, Alexander J D, Butler B J, et al. Reflectance technique for predicting soil organic matter[J]. Soil Science Society of America Journal, 1980,44(6):1282−1285. doi: 10.2136/sssaj1980.03615995004400060030x
    [18]
    田从学. 从工业TiOSO4液合成介孔二氧化钛分子筛的工艺及机理研究[D]. 成都: 四川大学, 2007.

    Tian Congxue. Study on synthesis of mesoporous titania and its formation mechanism from industrial titanyl sulfate solution[D]. Chengdu : Sichuan University, 2007.
    [19]
    Hao R, Wang G, Jiang C, et al. In situ hydrothermal synthesis of g-C3N4/TiO2 heterojunction photocatalysts with high specific surface area for Rhodamine B degradation[J]. Appl. Surf. Sci., 2017,411:400−410. doi: 10.1016/j.apsusc.2017.03.197
    [20]
    Guo X, Zhang G, Cui H, et al. Porous TiB2-TiC/TiO2 heterostructures: Synthesis and enhanced photocatalytic properties from nanosheets to sweetened rolls[J]. Appl. Catal. B:Environ., 2017,217:12−20. doi: 10.1016/j.apcatb.2017.05.079
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (170) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return