Volume 44 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
Hu Changqun, Zhao Jiayu, Chang Le, Zhou Changyu, He Xiaohua. Effects of mean load and load amplitude on biaxial dwell fatigue behavior of commercial pure titanium[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 52-60. doi: 10.7513/j.issn.1004-7638.2023.03.008
Citation: Hu Changqun, Zhao Jiayu, Chang Le, Zhou Changyu, He Xiaohua. Effects of mean load and load amplitude on biaxial dwell fatigue behavior of commercial pure titanium[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 52-60. doi: 10.7513/j.issn.1004-7638.2023.03.008

Effects of mean load and load amplitude on biaxial dwell fatigue behavior of commercial pure titanium

doi: 10.7513/j.issn.1004-7638.2023.03.008
  • Received Date: 2022-11-18
  • Publish Date: 2023-06-30
  • Based on biaxial dwell fatigue tests at room temperature, effects of different mean loads and load amplitudes on the biaxial dwell fatigue behavior of commercial pure titanium were studied. The results show that the mean strain and strain rate increase with the increase of mean load and load amplitude under the same dwell time. When the load amplitude remains constant, the creep strain increases with the increase of the mean load. However, when the mean load remains constant, the creep strain decreases with the increase of the load amplitude. By analyzing the interaction between biaxial ratcheting and creep strain, it is found that ratcheting strain and creep strain are always restricted by each other. Fracture surface analysis shows that with the increase of mean load and load amplitude, the fatigue strip characteristics disappear gradually, and the number of dimples and tearing ridges significantly increases, exhibiting ductile failure mode. Meanwhile, with the increase of mean load or load amplitude, equivalent strain amplitude is increased, leading to the decrease of fatigue life. Compared with the effect of mean load, fatigue life is more sensitive to the variation of load amplitude. Maximum principal strain, maximum shear strain, Mises equivalent strain, maximum principal stress and SWT models are used to perform biaxial dwell fatigue life prediction, among them SWT model has the highest prediction accuracy.
  • loading
  • [1]
    Chang L, Zhou B B, Ma T H, et al. The difference in low cycle fatigue behavior of CP-Ti under fully reversed strain and stress controlled modes along rolling direction[J]. Materials Science and Engineering A, 2019,742:211−223. doi: 10.1016/j.msea.2018.11.003
    [2]
    Peng J, Zhou C Y, Dai Q, et al. Fatigue and ratcheting behaviors of CP-Ti at room temperature[J]. Materials Science and Engineering A, 2014,59:329−337.
    [3]
    Chang L, Wen J B, Zhou C Y, et al. Uniaxial ratcheting behavior and fatigue life models of commercial pure titanium[J]. Fatigue & Fracture of Engineering Materials & Structures, 2018,41(9):2024−2039.
    [4]
    Chang L, Ma T H, Zhou B B, et al. Comprehensive investigation of fatigue behavior and a new strain-life model for CP-Ti under different loading conditions[J]. International Journal of Fatigue, 2019,129(C):105220.
    [5]
    Ma T H, Gao N, Chang L, et al. Low-cycle fatigue behavior and life prediction of CP-Ti under non-proportional and multiaxial loading[J]. Engineering Fracture Mechanics, 2021,254:107930. doi: 10.1016/j.engfracmech.2021.107930
    [6]
    Ma T H, Zhou C Y, Gao N, et al. Low cycle fatigue behavior of CP-Ti under multiaxial load-controlled mode at different multiaxial stress ratios[J]. International Journal of Fatigue, 2022,160:106868. doi: 10.1016/j.ijfatigue.2022.106868
    [7]
    Zhao J Y, Lu Z, Zhou C Y, et al. In‐plane biaxial ratcheting effect and low‐cycle fatigue behavior of CP‐Ti based on DIC method[J]. Fatigue & Fracture of Engineering Materials & Structures, 2022,45(5):1464−1479.
    [8]
    Chang L, Zhou C Y, Peng J, et al. Creep behavior of CP-Ti TA2 at low temperature and intermediate temperature[J]. Rare Metal Materials and Engineering, 2017,46(6):1463−1468. doi: 10.1016/S1875-5372(17)30147-9
    [9]
    Peng J, Zhou C Y, Dai Q, et al. Dwell fatigue and cycle deformation of CP-Ti at ambient temperature[J]. Materials & Design, 2015,71:1−16.
    [10]
    Sakane M, Isobe N. Tension-torsion multiaxial creep-fatigue lives of the Nickel-based superalloy alloy 738LC[J]. International Journal of Fatigue, 2022,155:106575. doi: 10.1016/j.ijfatigue.2021.106575
    [11]
    Yamamoto T, Itoh T, Sakane M, et al. Creep-fatigue life of Sn-8Zn-3Bi solder under multiaxial loading[J]. International Journal of Fatigue, 2012,43:235−241. doi: 10.1016/j.ijfatigue.2012.04.007
    [12]
    Zhang S D, Sakane M. Multiaxial creep-fatigue life prediction for cruciform specimen[J]. International Journal of Fatigue, 2007,29(12):2191−2199. doi: 10.1016/j.ijfatigue.2006.12.012
    [13]
    Xu L, Kojima T, Itoh T. Creep–fatigue life evaluation of type 304 stainless steel under non-proportional loading[J]. International Journal of Pressure Vessels and Piping, 2021,194:104515. doi: 10.1016/j.ijpvp.2021.104515
    [14]
    Conceptualization L X U, Conceptualization R Z W, Conceptualization L H E. On multiaxial creep–fatigue considering the non-proportional loading effect: Constitutive modeling, deformation mechanism, and life prediction[J]. International Journal of Plasticity, 2022: 103337.
    [15]
    Li D H, Shang D G, Yin X, et al. A novel fatigue-oxidation-creep life prediction method under non-proportional loading[J]. Engineering Failure Analysis, 2022,131:105805. doi: 10.1016/j.engfailanal.2021.105805
    [16]
    Bertini L. Life predictions by three creep-fatigue interaction models: influence of multiaxiality and time-variable loadings[J]. Materials at High Temperatures, 1991,9(1):23−29. doi: 10.1080/09603409.1991.11689636
    [17]
    Asayama T, Aoto K, Wada Y. Effect of nonproportional loading on creep-fatigue properties of 304 stainless steel at low strain ranges near the elastic region[J]. Nuclear Engineering and Design, 1993,139(3):299−309. doi: 10.1016/0029-5493(93)90172-6
    [18]
    ASTM E8/E8 M-2013a. Standard test method for tension testing of metallic materials[S].
    [19]
    Kulawinski D, Ackermann S, Glage A, et al. Biaxial low cycle fatigue behavior and martensite formation of a metastable austenitic cast TRIP steel under proportional loading[J]. Steel Research International, 2011,82(9):1141−1148. doi: 10.1002/srin.201100111
    [20]
    Sakane M. Effect of multiaxial stress and strain on low cycle fatigue, creep and creep-fatigue lifetimes for type 304 steel cruciform and cubic specimens[J]. Materialwissenschaft und Werkstoffechnik, 2018,49(3):301−315. doi: 10.1002/mawe.201700206
    [21]
    Nagel K, Kulawinski D, Henkel S. Characterization of stress-strain behavior of a cast TRIP steel under different biaxial planar load ratios[J]. Engineering Fracture Mechanics, 2011,78(8):1684−1695. doi: 10.1016/j.engfracmech.2011.02.021
    [22]
    Xiao Lin, Song Kai, Gu Haicheng. Biaxial low cycle fatigue lifetime evaluation of Zircaloy-4[J]. Acta. Metall. Sin., 1999,(4):397−402. (肖林, 宋凯, 顾海澄. Zr-4双轴低周疲劳寿命估算[J]. 金属学报, 1999,(4):397−402.

    Xiao Lin, Song Kai, Gu Haicheng. Biaxial low cycle fatigue lifetime evaluation of Zircaloy-4[J]. Acta. Metall. Sin. , 1999 (4): 397-402.
    [23]
    Poncelet M, Barbier G, Raka B, et al. Biaxial high cycle fatigue of a type 304L stainless steel: Cyclic strains and crack initiation detection by digital image correlation[J]. European Journal of Mechanics / A Solids, 2010,29(5):810−825. doi: 10.1016/j.euromechsol.2010.05.002
    [24]
    Takamoto I, Sakane M, Masateru O. High temperature multiaxial low cycle fatigue of cruciform specimen[J]. Journal of Engineering Materials and Technology, 1994,116(1):90−98. doi: 10.1115/1.2904261
    [25]
    Cláudio R, Reis L, Freitas M. Biaxial high-cycle fatigue life assessment of ductile aluminum cruciform specimens[J]. Theoretical and Applied Fracture Mechanics, 2014,73:82−90. doi: 10.1016/j.tafmec.2014.08.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (114) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return