Volume 44 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
Liu Jiawen, Fang Hongmei, Cao Lili, Zhang Ya, Yang Dengke. Study on the strength and toughness mechanism of multilayered gradient ultrafine-grained titanium[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 93-99. doi: 10.7513/j.issn.1004-7638.2023.03.014
Citation: Liu Jiawen, Fang Hongmei, Cao Lili, Zhang Ya, Yang Dengke. Study on the strength and toughness mechanism of multilayered gradient ultrafine-grained titanium[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 93-99. doi: 10.7513/j.issn.1004-7638.2023.03.014

Study on the strength and toughness mechanism of multilayered gradient ultrafine-grained titanium

doi: 10.7513/j.issn.1004-7638.2023.03.014
  • Received Date: 2022-11-03
  • Publish Date: 2023-06-30
  • In view of the poor toughness and work hardening performance of ultra-fine grained (UFG) metals at room temperature, we designed and prepared the micro multilayer hierarchical structure (MHS) of metal materials using low-temperature rolling and surface mechanical attrition treatment (SMAT) processes, which improved the mechanical properties and work hardening ability of UFG Ti. The microstructure observation and mechanical properties testing, combined with fracture surface analysis, show that the multilayer gradient microstructure can improve the work hardening ability of ultrafine-grained metal, achieving a more moderate stress distribution and an improved resistance of the workpiece to failure cracks. A fracture mechanics model is proposed to explain the crack arrest effect of the MHS.
  • loading
  • [1]
    雷漫江. 复合细化制备超细晶工业纯钛的腐蚀疲劳行为研究[D]. 西安: 西安建筑科技大学, 2020.

    Lei Manjiang. Corrosion fatigue properties of UFG CP Ti prepared by compound refinement [D]. Xi'an: Xi'an University of Architecture and Technology, 2020.
    [2]
    Yang Yu. Study on microstructure evolution of ultrafine crystallization of TA2 industrial pure titanium[J]. Light Industry Technology, 2020,36(2):45−46. (杨羽. TA2工业纯钛超细晶化的组织演化规律研究[J]. 轻工科技, 2020,36(2):45−46.

    Yang Yu. Study on microstructure evolution of ultrafine crystallization of TA2 industrial pure titanium [J]. Light Industry Technology, 2020, 36(2): 45-46.
    [3]
    赵鹏程. 温度及应力诱发超细晶工业纯钛再结晶与晶粒长大的机理研究[D]. 上海: 华东理工大学, 2020.

    Zhao Pengcheng. A study on the mechanism of temperature and stress induced recrystallization and grain growth of ultrafine grained CP Ti[D]. Shanghai: East China University of Science and Technology, 2020.
    [4]
    Ma Weijie, Yang Xirong, Luo Lei, et al. Dynamic recrystallization model of ultra-fine grained pure titanium under combined deformation[J]. Journal of Materials Research, 2020,34(3):217−224. (马炜杰, 杨西荣, 罗雷, 等. 复合形变超细晶纯钛的动态再结晶模型[J]. 材料研究学报, 2020,34(3):217−224.

    Ma Weijie, Yang Xirong, Luo Lei, et al.Dynamic recrystallization model of ultra-fine grained pure titanium under combined deformation [J]. Journal of Materials Research, 2020, 34(3): 217-224.
    [5]
    Murzaev R T, Bachurin D V, Mukhametgalina A A, et al. Ultrasonic treatment of ultrafine-grained titanium[J]. Physics Letters A, 2020,384(35):126906. doi: 10.1016/j.physleta.2020.126906
    [6]
    Zhang D Y, Qiu D, Gibson M A. et al. Author correction: Additive manufacturing of ultrafine-grained high strength titanium alloys[J]. Nature, 2020,582(7811):E5. doi: 10.1038/s41586-020-2291-z
    [7]
    庄丽敏. 累积叠轧法制备的超细晶纯Cu、纯Al及Cu/Al多层复合板组织与性能的研究[D]. 南京: 南京理工大学, 2015.

    Zhuang Limin. Study on the microstructure and properties of ultrafine grain pure Cu, pure Al and Cu/Al multilayer composite plates prepared by accumulative roll forming[D]. Nanjing: Nanjing University of Technology, 2015.
    [8]
    Li Jianguo, Guo Yazhou, Li Yulong, et al. Preparation and mechanical properties of ultra-fine grained pure titanium at room temperature[J]. Rare Metal Materials and Engineering, 2015,44(3):681−687. (李建国, 郭亚洲, 李玉龙, 等. 常温下超细晶纯钛的制备及其力学性能[J]. 稀有金属材料与工程, 2015,44(3):681−687.

    Li Jianguo, Guo Yazhou, Li Yulong, et al. Preparation and mechanical properties of ultra-fine grained pure titanium at room temperature[J]. Rare Metal Materials and Engineering, 2015, 44 (3): 681-687.
    [9]
    Nokhrin A V, Andreev P V, Likhnitskii C V, et al. Studying corrosion resistance of weld joints of ultrafine-grained titanium alloys[J]. Iop Conference Series:Materials Science and Engineering, 2021,1014(1):012037. doi: 10.1088/1757-899X/1014/1/012037
    [10]
    Daniel Wojtas, Krzyaztof W, Robert C, et al. Microstructure strength relationship of ultrafine-grained titanium manufactured by unconventional severe plastic deformation process[J]. Journal of Alloy and Compounds, 2020,837:155576. doi: 10.1016/j.jallcom.2020.155576
    [11]
    刘德同. 高压扭转处理超细晶纯钛微观组织演变及热稳定性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    Liu Detong. Study on microstructure evolution and thermal stability of ultrafine-grained pure titanium after high pressure torsion treatment [D]. Harbin: Harbin University of Technology, 2015.
    [12]
    Feng Fan, Xin Haitao, Wu Yulu, et al. Effect of different roughening treatments on surface properties of ultrafine-grained pure titanium[J]. Journal of Practical Stomatology, 2017,33(2):168−173. (丰帆, 辛海涛, 吴玉禄, 等. 不同粗化处理对超细晶纯钛表面性能的影响[J]. 实用口腔医学杂志, 2017,33(2):168−173. doi: 10.3969/j.issn.1001-3733.2017.02.006

    Feng Fan, Xin Haitao , Wu Yulv , et al. Effect of different roughening treatments on surface properties of ultrafine-grained pure titanium [J]. Journal of Practical Stomatology, 2017, 33(2): 168-173. doi: 10.3969/j.issn.1001-3733.2017.02.006
    [13]
    Noyan I C, Cohen J B. Residual stresses measurement by diffraction and interpretation [M]. New York: Springer-Verlag, 1987.
    [14]
    Díaz N E Vives, Schacherl R E, Zagonel L F, et al. Influence of the microstructure on the residual stresses of nitrided iron–chromium alloys[J]. Acta Materialia, 2007,56(6):1196−1208.
    [15]
    Yang Y. Study on microstructure evolution of ultrafine crystallization of TA2 industrial pure titanium[J]. Journal of Physics:Conference Series, 2022,2229(1):012003. doi: 10.1088/1742-6596/2229/1/012003
    [16]
    Chong Yan, Tsuru Tomohito, Guo Baoqi, et al. Ultrahigh yield strength and large uniform elongation achieved in ultrafine-grained titanium containing nitrogen[J]. Acta Materialia, 2022, 240: 118356.
    [17]
    Yang Xirong, Wang Liyuan, Hao Fengfeng, et al. Fretting fatigue properties of ultrafine grained pure titanium[J]. Rare Metal Materials and Engineering, 2020,49(10):3433−3438. (杨西荣, 王立元, 郝凤凤, 等. 超细晶纯钛的微动疲劳特性[J]. 稀有金属材料与工程, 2020,49(10):3433−3438.

    Yang Xirong, Wang Liyuan, Hao Fengfeng, et al. Fretting fatigue properties of ultrafine grained pure titanium [J]. Rare Metal Materials and Engineering, 2020, 49 (10): 3433-3438.
    [18]
    Liu Xiaoyan, Liu Kuijun, Yang Xirong, et al. Fatigue crack propagation behavior of ultrafine-grained pure titanium[J]. Journal of Materials Research, 2020,34(6):417−424. (刘晓燕, 柳奎君, 杨西荣, 等. 超细晶纯钛疲劳裂纹的扩展行为[J]. 材料研究学报, 2020,34(6):417−424. doi: 10.11901/1005.3093.2019.492

    Liu Xiaoyan, Liu Kuijun , Yang Xirong, et al. Fatigue crack propagation behavior of ultrafine-grained pure titanium[J]. Journal of Materials Research, 2020, 34(6): 417-424. doi: 10.11901/1005.3093.2019.492
    [19]
    刘建龙. 超细晶纯钛塑性微成形及其尺寸效应研究[D]. 太原: 太原科技大学, 2016.

    Liu Jianlong. Study on plastic micro forming and size effect of ultrafine grain titanium[D]. Taiyuan: Taiyuan University of Science and Technology, 2016.
    [20]
    张志伟. 高强度超细晶金属材料塑性行为研究[D]. 马鞍山: 安徽工业大学, 2020.

    Zhang Zhiwei. Study on plastic behavior of high strength ultrafine grained metallic materials [D]. Ma'anshan: Anhui University of Technology, 2020. )
    [21]
    Peng Shaochi, Jing Laiwang, Wu Di, et al. Analytical solution of stress intensity factor at the closed crack tip of a circular hole plate under compression[J]. Journal of Water Resources and Water Engineering, 2022,33(6):159−166. (彭绍驰, 经来旺, 吴迪, 等. 受压圆孔板的闭合裂纹尖端应力强度因子解析解[J]. 水资源与水工程学报, 2022,33(6):159−166.

    Peng Shaochi, Jing Laiwang, Wu Di, et al. Analytical solution of stress intensity factor at the closed crack tip of a circular hole plate under compression [J]. Journal of Water Resources and Water Engineering, 2022, 33 (6): 159-166.
    [22]
    Zhang Zhengguo. Calculation of stress intensity factor K of Griffith crack in orthotropic plate by superposition principle and symmetry anti symmetry principle KK[J]. Engineering Mechanics, 1985,(1):6−24. (张正国. 应用叠加原理和对称—反对称原理计算正交各向异性板Griffith裂纹的应力强度因子KK[J]. 工程力学, 1985,(1):6−24.

    Zhang Zhengguo. Calculation of stress intensity factor K of Griffith crack in orthotropic plate by superposition principle and symmetry anti symmetry principle$ {\mathrm{K}}_{\mathrm{Ⅰ}}{\mathrm{K}}_{\mathrm{Ⅱ}} $[J]. Engineering Mechanics, 1985 (1): 6-24.
    [23]
    Nikonenko A V, Popova N A, Nikonenko E L, et al. Phase composition of ultrafine-grained titanium after aluminum ion implantation[J]. Russian Physics Journal, 2021,64:302−308. doi: 10.1007/s11182-021-02329-y
    [24]
    Chen W J, Xu J, Liu D T, et al. Thermal stability of ultrafine-grained pure titanium processed by high pressure torsion[J]. Materials Science Forum, 2021,1016:338−344. doi: 10.4028/www.scientific.net/MSF.1016.338
    [25]
    Yang Xirong, Yang Yuxin, Liu Xiaoyan, et al. Effect of strain ratio on low cycle fatigue behavior of composite ultrafine grained pure titanium[J]. Rare Metal Materials and Engineering, 2020,49(9):3136−3142. (杨西荣, 杨雨欣, 刘晓燕, 等. 应变比对复合细化超细晶纯钛低周疲劳行为的影响[J]. 稀有金属材料与工程, 2020,49(9):3136−3142.

    Yang Xirong, Yang Yuxin, Liu Xiaoyan, et al. Effect of strain ratio on low cycle fatigue behavior of composite ultrafine grained pure titanium [J]. Rare Metal Materials and Engineering, 2020, 49 (9): 3136-3142.
    [26]
    Zhang Zipeng, Song Xu, Li Xiaoqiang, et al. Research progress of mechanical treatment technology for metal ultrafine grain surface[J]. Precision Forming Engineering, 2021,13(4):159−171. (张子鹏, 宋旭, 李小强, 等. 金属超细晶表面机械处理技术研究进展[J]. 精密成形工程, 2021,13(4):159−171. doi: 10.3969/j.issn.1674-6457.2021.04.024

    Zhang Zipeng, Song Xu, Li Xiaoqiang, et al. Research progress of mechanical treatment technology for metal ultrafine grain surface [J]. Precision Forming Engineering, 2021, 13 (4): 159-171. doi: 10.3969/j.issn.1674-6457.2021.04.024
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (102) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return