Volume 44 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
Li Bing, Wu Zhiwei, Chen Wenxiong, Wang Xiaoqiang, Lang Dong, Zhang Jun, Mao Jian. Effect of deoxidizer on non-metallic inclusions in M50NiL steel[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 177-182. doi: 10.7513/j.issn.1004-7638.2023.03.027
Citation: Li Bing, Wu Zhiwei, Chen Wenxiong, Wang Xiaoqiang, Lang Dong, Zhang Jun, Mao Jian. Effect of deoxidizer on non-metallic inclusions in M50NiL steel[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 177-182. doi: 10.7513/j.issn.1004-7638.2023.03.027

Effect of deoxidizer on non-metallic inclusions in M50NiL steel

doi: 10.7513/j.issn.1004-7638.2023.03.027
  • Received Date: 2022-08-26
  • Publish Date: 2023-06-30
  • Different deoxidizers were used for deoxidation in the vacuum smelting process of aero-engine bearing steel M50NiL, and the influence of different deoxidizer types on the morphology, type, size and number density of inclusions in the steel were studied. The results indicate that without adding deoxidizer, the inclusions in steel are mainly Al2O3 and Al-Mg spinel. After using Al-RE as deoxidizer, the main types of inclusions in steel are rare earth inclusions. When Al-RE-Si-Mn is used as deoxidizer, the type, size and distribution characteristics of inclusions in steel are basically similar to those of Al-RE deoxidizer. The addition of rare earth elements can significantly improve the type and morphology of inclusions in steel, where the main inclusion types are transformed from Al2O3-rich inclusions with angular and irregular shapes to nearly spherical rare earth inclusions, while reduce the maximum size of inclusions in steel and the number of large-sized Al2O3 inclusions. However, excessive addition of rare earth causes the agglomeration of rare earth inclusions in steel.
  • loading
  • [1]
    Bhattacharyya Abir, Subhash Ghatu, Arakere Nagaraj. Evolution of subsurface plastic zone due to rolling contact fatigue of M50NiL case hardened bearing steel[J]. Int J Fatigue, 2014,59:102−113. doi: 10.1016/j.ijfatigue.2013.09.010
    [2]
    Wang Fangfang, Zhou Chungen, Zheng Lijing, et al. Corrosion resistance of carbon ion-implanted M50NiL aerospace bearing steel[J]. Prog Nat Sci:Mater Int, 2017,27(5):615−621. doi: 10.1016/j.pnsc.2017.07.003
    [3]
    Wang P, Wang B, Liu Y, et al. Effects of inclusion types on the high-cycle fatigue properties of high-strength steel[J]. Scripta Mater, 2022,206:114232. doi: 10.1016/j.scriptamat.2021.114232
    [4]
    Cerullo Michele, Tvergaard Viggo. Micromechanical study of the effect of inclusions on fatigue failure in a roller bearing[J]. International Journal of Structural Integrity, 2015,6(1):124−141. doi: 10.1108/IJSI-04-2014-0020
    [5]
    Bhadeshia H K D H. Steels for bearings[J]. Prog Mater Sci, 2012,57(2):268−435. doi: 10.1016/j.pmatsci.2011.06.002
    [6]
    Pan Tao, Yang Zhigang, Bai Bingzhe, et al. Study on thermal stress and strain energy in γ-Fe matrix around inclusion caused by thermal coefficient difference[J]. Acta Metallurgica Sinica, 2003,(10):1037−1042. (潘涛, 杨志刚, 白秉哲, 等. 钢中夹杂物与奥氏体基体热膨胀系数差异导致的热应力和应变能研究[J]. 金属学报, 2003,(10):1037−1042. doi: 10.3321/j.issn:0412-1961.2003.10.005

    Pan Tao, Yang Zhigang, Bai Bingzhe, et al. Study on thermal stress and strain energy in γ-Fe matrix around inclusion caused by thermal coefficient difference[J]. Acta Metallurgica Sinica, 2003 (10): 1037-1042. doi: 10.3321/j.issn:0412-1961.2003.10.005
    [7]
    栾心汉. 小电炉炼钢[M]. 西安: 陕西科学技术出版社, 1982.

    Luan Xinhan. A small electric furnace makes steel[M]. Xi, an: Shaanxi Science and Technology Press, 1982.
    [8]
    Gu Chao, Bao Yanping, Gan Peng, et al. An experimental study on the impact of deoxidation methods on the fatigue properties of bearing steels[J]. Steel Research International, 2018,89(9):1800129. doi: 10.1002/srin.201800129
    [9]
    Xiao Wei, Wang Min, Bao Yanping. The research of low-oxygen control and oxygen behavior during RH process in silicon-deoxidization bearing steel[J]. Metals, 2019,9(8):812. doi: 10.3390/met9080812
    [10]
    Zheng Hongyan, Guo Shuqiang, Qiao Mengran, et al. Study on the modification of inclusions by Ca treatment in GCr18Mo bearing steel[J]. Advances in Manufacturing, 2019,7(4):438−447. doi: 10.1007/s40436-019-00266-1
    [11]
    Hsu Chinchuan, Chung Hohua. Analysis of influence of aluminum content on inclusion characteristic and fatigue life of bearing steel using statistics of extreme values[J]. Advanced Materials Research, 2014,939:11−18. doi: 10.4028/www.scientific.net/AMR.939.11
    [12]
    Xiao Wei, Bao Yanping, Gu Chao, et al. Ultrahigh cycle fatigue fracture mechanism of high-quality bearing steel obtained through different deoxidation methods[J]. International Journal of Minerals, Metallurgy and Materials, 2021,28(5):804−815. doi: 10.1007/s12613-021-2253-y
    [13]
    Wang Le, Liu Liu, Yao Tonglu, et al. New process development of refining clean bearing steel with low cost[J]. Steelmaking, 2018,34(3):67−72. (王乐, 刘浏, 姚同路, 等. 低成本轴承钢洁净冶炼新工艺的开发[J]. 炼钢, 2018,34(3):67−72.

    Wang Le, Liu Liu, Yao Tonglu, et al. New process development of refining clean bearing steel with low cost[J]. Steelmaking, 2018, 34(3): 67-72.
    [14]
    Yang Chaoyun, Luan Yikun, Li Dianzhong, et al. Effects of rare earth elements on inclusions and impact toughness of high-carbon chromium bearing steel[J]. Journal of Materials Science & Technology, 2019,35(7):1298−1308.
    [15]
    Wu Hua, Yan Su, Yang You, et al. Influence of inclusions on fatigue properties of 18Mn2SiVB non-quenched steel[J]. Heat Treat Met, 2006,(3):88−90. (吴化, 闫肃, 杨友, 等. 18Mn2SiVB非调质钢中夹杂物对其疲劳性能的影响[J]. 金属热处理, 2006,(3):88−90. doi: 10.3969/j.issn.0254-6051.2006.03.024

    Wu Hua, Yan Su, Yang You, et al. Influence of inclusions on fatigue properties of 18 Mn2 SiVB non-quenched steel[J]. Heat Treat Met, 2006 (3): 88-90. doi: 10.3969/j.issn.0254-6051.2006.03.024
    [16]
    邓爱军. 高铁用轴承钢冶金过程的关键技术研究[D]. 马鞍山: 安徽工业大学, 2019.

    Deng Aijun. Research on the key technology of metallurgical process of bearing steel for high-speed rail[D]. Ma'anshan: Anhui University of Technology, 2019.
    [17]
    GB/T 10561-2005. 钢中非金属夹杂物含量的测定标准评级图显微检验法[S].

    GB/T 10561-2005. Standard grading chart microscopic inspection method for determination of non-metallic inclusion content in steel[S].
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (84) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return