Volume 44 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Lu Jie, Su Qixiang, Huang Jixiang, Zhang Huanhuan, Lei Ting, Yin Shubiao, Ma Zhenghong. Effect of different vanadium and nitrogen contents on microstructure and properties of Nb-V microalloyed high-strength seismic reinforcement[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 149-157. doi: 10.7513/j.issn.1004-7638.2023.04.022
Citation: Lu Jie, Su Qixiang, Huang Jixiang, Zhang Huanhuan, Lei Ting, Yin Shubiao, Ma Zhenghong. Effect of different vanadium and nitrogen contents on microstructure and properties of Nb-V microalloyed high-strength seismic reinforcement[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 149-157. doi: 10.7513/j.issn.1004-7638.2023.04.022

Effect of different vanadium and nitrogen contents on microstructure and properties of Nb-V microalloyed high-strength seismic reinforcement

doi: 10.7513/j.issn.1004-7638.2023.04.022
  • Received Date: 2023-01-04
  • Publish Date: 2023-08-30
  • Vanadium and nitrogen can effectively improve the comprehensive performance of Nb-V microalloyed high strength seismic reinforcement. The microstructure of three kinds of Nb-V microalloyed high-strength seismic reinforcement bars with different vanadium and nitrogen contents was characterized and tested by metallographic microscope, scanning electron microscope, transmission electron microscope and mechanical testing machine. The results show that the final microstructure of the three test steels is composed of ferrite, pearlite and small amount of bainite. As vanadium and nitrogen contents in test steel increases, the ferrite grain size is reduced, pearlite lamellar spacing is gradually thinning. With the increase of vanadium and nitrogen contents in precipitated phase NbV (C, N), the volume fraction of precipitated second phase particles increases and the particle size decreases. The fracture morphology of the tested steels is dimple fracture, and the dimple deepens and the diameter increases with the increase of vanadium and nitrogen contents. In terms of mechanical properties, tensile strength increases, yield strength and hardness slightly decrease and then increases.
  • loading
  • [1]
    Zhou Yun, Yang Xiaowei, Chen Huande, et al. Effect of heating temperature on microstructure and properties of 600 MPa grade high strength steel rebars[J]. Iron & Steel, 2020,55(1):101−107. (周云, 杨晓伟, 陈焕德, 等. 加热温度对600 MPa级高强钢筋组织及性能的影响[J]. 钢铁, 2020,55(1):101−107.

    Zhou Yun, Yang Xiaowei, Chen Huande, et al. Effect of heating temperature on microstructure and properties of 600 MPa grade high strength steel rebars[J]. Iron & steel, 2020, 55(1): 101-107.
    [2]
    Wang Y, Guo C H, Chen X J, et al. Carbon peak and carbon neutrality in China: Goals, implementation path and prospects[J]. China Geology, 2021,4(4):720−746.
    [3]
    Zhang W L, Wang J, Sun H T. A primary school teaching building aseismic reinforcement application analysis[C]//Proceedings of 2017 2nd International Conference on Information Technology and Management Engineering. Beijing: Science and Engineering Research Center, 2017: 180-184.
    [4]
    Yang H Y, Ma Z C, Lei C H, et al. High strength and high conductivity Cu alloys: A review[J]. Science China (Technological Sciences), 2020,63(12):2505−2517. doi: 10.1007/s11431-020-1633-8
    [5]
    Zhou Mengsha, Liu Xing, Chen Wei, et al. Effect of N content on' microstructure and properties of Nb microalloyed HRB400E steel bar[J]. Journal of Iron and Steel Research, 2022,34(8):848−858. (周梦莎, 刘星, 陈伟, 等. N含量对Nb微合金化HRB400E钢筋组织与性能的影响[J]. 钢铁研究学报, 2022,34(8):848−858.

    Zhou Mengsha, Liu Xing, Chen Wei, et al. Effect of N content on' microstructure and properties of Nb microalloyed HRB400 E steel bar[J]. Journal of Iron and Steel Research, 2022, 34(8): 848-858.
    [6]
    Wang Xiaodong, Chen Yunbo, Zuo Lingli, et al. V-N microalloying of CrSiMn low-alloy cast steel[J]. Heat Treatment of Metals, 2021,46(8):15−20. (王晓东, 陈蕴博, 左玲立, 等. V-N微合金化CrSiMn系低合金铸钢中的析出行为[J]. 金属热处理, 2021,46(8):15−20.

    Wang Xiaodong, Chen Yunbo, Zuo Lingli, et al. V-N microalloying of CrSiMn low-alloy cast steel[J]. Heat Treatment of Metals, 2021, 46(8): 15-20.
    [7]
    Hutchinson Bevis. Different roles for vanadium as a microalloying element in structural steels[J]. Journal of Iron and Steel Research (International), 2011,18(S1):29−38.
    [8]
    Peng Xiong, Xiao Ya, Wang Shaobin, et al. Development of V-N alloyed hot rolled ribbed bar HRB400E[J]. China Metallurgy, 2019,29(1):25−29. (彭雄, 肖亚, 王绍斌, 等. 钒氮合金化热轧抗震钢筋HRB400E产品开发[J]. 中国冶金, 2019,29(1):25−29.

    Peng Xiong, Xiao Ya, Wang Shaobin, et al. Development of V-N alloyed hot rolled ribbed bar HRB400 E[J]. China Metallurgy, 2019, 29(1): 25-29.
    [9]
    蒋小冬. 屈服强度390 MPa级低合金钢的组织演变与力学性能研究[D]. 沈阳: 东北大学, 2015.

    Jiang Xiaodong. Study on microstructure evolution and mechanical properties of low alloy steel with yield strength of 390 MPa[D]. Shenyang: Northeastern University, 2015.
    [10]
    Qiao Zhixia, Liu Yongchang. Phase transformation and microstructural control of low alloyed ultra-high strength steels[J]. Heat Treatment of Metals, 2015,40(1):12−22. (乔志霞, 刘永长. 低合金超高强度钢中的相变及组织控制[J]. 金属热处理, 2015,40(1):12−22.

    Qiao Zhixia, Liu Yongchang. Phase transformation and microstructural control of low alloyed ultra-high strength steels[J]. Heat Treatment of Metals, 2015, 40(1): 12-22.
    [11]
    Pan H B, Zhang M J, Liu W M, et al. Effects of micro-alloying and production process on precipitation behaviors and mechanical properties of HRB600[J]. Journal of Iron and Steel Research (International), 2017,24(5):536−543. doi: 10.1016/S1006-706X(17)30081-X
    [12]
    Cao Jianchun, Ye Yaping, Yin Shubiao, et al. Continuous cooling transformation of austenite during deformation of niobium microalloyed seismic reinforcement[J]. Iron & Steel, 2019,54(12):81−88. (曹建春, 叶亚平, 阴树标, 等. 铌微合金化抗震钢筋形变奥氏体连续冷却转变[J]. 钢铁, 2019,54(12):81−88.

    Chao Jianchun, Ye Yaping, Yin Shubiao, et al. Continuous cooling transformation of austenite during deformation of niobium microalloyed seismic reinforcement[J]. Iron & steel, 2019, 54(12): 81-88.
    [13]
    刘建, 李月丽. 钒氮微合金化对汽车用热轧钢板组织与力学性能的影响[J]. 塑性工程学报, 2022, 29(3): 150-156.

    Liu Jian, Li Yueli. Effect of vanadium nitrogen microalloying on microstructure and mechanical properties of hot rolled steel sheet for automobile[J]. Journal of Plasticity Engineering, 202, 29(3): 150-156
    [14]
    Chen X W, Liao B, Qiao G Y, et al. Effect of Nb on mechanical properties of HAZ for high-Nb X80 pipeline steels[J]. Journal of Iron and Steel Research (International), 2013,20(12):53−60. doi: 10.1016/S1006-706X(13)60216-2
    [15]
    Cao Lei, Yang Zhongming, Chen Ying, et al. Effect of nitrogen on the microstructure evolution in 20MnSi steel bearing with niobium[J]. Iron & Steel, 2015,50(11):75−80. (曹磊, 杨忠民, 陈颖, 等. 氮对含铌20MnSi钢组织演变的影响[J]. 钢铁, 2015,50(11):75−80.

    Cao Lei, Yang Zhongming, Chen Ying, et al. Effect of nitrogen on the microstructure evolution in 20 MnSi steel bearing with niobium[J]. Iron & Steel, 2015, 50(11): 75-80.
    [16]
    Yang Caifu. Recent development and applications of vanadium microalloying technology[J]. Journal of Iron and Steel Research, 2020,32(12):1029−1043. (杨才福. 钒微合金化钢的技术进展与应用[J]. 钢铁研究学报, 2020,32(12):1029−1043.

    Yang Caifu. Recent development and applications of vanadium microalloying technology[J]. Journal of Iron and Steel Research, 2020, 32(12): 1029-1043.
    [17]
    Li Zhiying, Li Changrong, Zeng Zeyun, et al. Thermodynamic study of carbide and nitride precipitation of niobium in 500MPa high-strength anti-seismic rebars[J]. Journal of Iron and Steel Research, 2020,32(8):727−733. (黎志英, 李长荣, 曾泽芸, 等. 高强抗震钢筋中铌的碳、氮化物析出热力学研究[J]. 钢铁研究学报, 2020,32(8):727−733.

    Li Zhiying, Li Changrong, Zeng Zeyun, et al. Thermodynamic study of carbide and nitride precipitation of niobium in 500 MPa high-strength anti-seismic rebars[J]. Journal of Iron and Steel Research, 2020, 32(8): 727-733.
    [18]
    Li Baoxiu. Effect of nitrogen content 500E seismic reinforcement 20MnVN on microstructure and properties[J]. Special Steel, 2016,37(5):59−61. (李宝秀. 氮含量500E抗震钢筋20MnVN组织和性能的影响[J]. 特殊钢, 2016,37(5):59−61.

    Li Baoxiu. Effect of nitrogen content 500 E seismic reinforcement 20 MnVN on microstructure and properties[J]. Special Steel, 2016, 37(5): 59-61.
    [19]
    Zhai Yongzhen, Xia Hao, Zhang Xin, et al. Effect of nitrogen content on microstructure and mechanical properties of V-N microalloyed high-strength reinforcement[J]. Heat Treatment of Metals, 2018,43(8):31−35. (翟永臻, 夏昊, 张昕, 等. 氮含量对V-N微合金化高强钢筋微观组织及力学性能的影响[J]. 金属热处理, 2018,43(8):31−35.

    Zhai Yongzhen, Xia Hao, Zhang Xin, et al. Effect of nitrogen content on microstructure and mechanical properties of V-N microalloyed high-strength reinforcement[J]. Heat Treatment of Metals, 2018, 43(8): 31-35.
    [20]
    Tian Zhun, Yuan Xiaomin. Effect of low temperature tempering process on microstructure and mechanical properties of 1100 MPa grade high strength steel[J]. Heat Treatment, 2015,30(4):21−25. (田准, 袁晓敏. 低温回火工艺对1100 MPa级高强钢组织和力学性能的影响[J]. 热处理, 2015,30(4):21−25.

    Tian Zhun, Yuan Xiaomin. Effect of low temperature tempering process on microstructure and mechanical properties of 1100 MPa grade high strength steel[J]. Heat Treatment, 2015, 30(4): 21-25.
    [21]
    Yang Jichun, Zhang Jian, Li Hongwei. Influent of vanadium on microstructure and properties of highnitrogen 20MnSi steel[J]. Iron Steel Vanadium Titanium, 2015,36(1):43−47. (杨吉春, 张剑, 栗宏伟, 等. 钒对高氮20MnSi螺纹钢组织和性能的影响研究[J]. 钢铁钒钛, 2015,36(1):43−47.

    Yang Jichun, Zhang Jian, Li Hongwei. Influent of vanadium on microstructure and properties of highnitrogen 20 MnSi steel[J]. Iron Steel Vanadium Titanium, 2015, 36(1): 43-47.
    [22]
    Hu Xiaoxuan, Wang Ruizhen, Zhou Yun, et al. Effect of vanadium and nitrogen content on microstructure and properties of wear resistant steel NM400[J]. Iron & Steel, 2014,49(10):89−94. (胡筱旋, 王瑞珍, 周芸, 等. 钒, 氮含量对耐磨钢NM400组织及性能的影响[J]. 钢铁, 2014,49(10):89−94.

    Hu Xiaoxuan, Wang Ruizhen, Zhou Yun, et al. Effect of vanadium and nitrogen content on microstructure and properties of wear resistant steel NM400[J]. Iron & Steel, 2014, 49(10): 89-94.
    [23]
    Wu Hualin, Wang Fuming, Li Changrong, et al. Effect of Nb on the precipitated phases of MX in switch K2 spring steel[J]. Journal of Beijing University of Science and Technology, 2011,33(8):927−935. (吴华林, 王福明, 李长荣, 等. Nb对转K2弹簧钢中MX析出相的影响[J]. 北京科技大学学报, 2011,33(8):927−935.

    Wu Hualin, Wang Fuming, Li Changrong, et al. Effect of Nb on the precipitated phases of MX in switch K2 spring steel[J]. Journal of Beijing University of Science and Technology, 2011, 33(8): 927-935.
    [24]
    Pang Q H, Guo J, Li W J, et al. Complex precipitation mechanism of Ti -Nb-V microalloyed bainitic base high strength steel[J]. Journal of Wuhan University of Technology (Materials Science), 2019,34(6):1444−1450. doi: 10.1007/s11595-019-2211-y
    [25]
    Qin Xiangzhi, Lv Yuan, Xie Guoqing, et al. Effect of Mn on microstructure and mechanical properties of ultra-low carbon Ti microalloyed SM490A steel[J]. Iron Steel Vanadium Titanium, 2020,41(4):121−124. (秦翔智, 吕远, 谢国庆, 等. Mn对超低碳Ti微合金化SM490A钢显微组织与力学性能的影响[J]. 钢铁钒钛, 2020,41(4):121−124.

    Qin Xiangzhi, Lv Yuan, Xie Guoqing, et al. Effect of Mn on microstructure and mechanical properties of ultra-low carbon Ti microalloyed SM490 A steel[J]. Iron Steel Vanadium Titanium, 2020, 41(4): 121-124.
    [26]
    Hutchinson Bevis. Different roles for vanadium as a microalloying element in structural steels[J]. Journal of Iron and Steel Research, 2011,18(201):29−38.
    [27]
    Xue Z L, Li Z B, Zhang J W, et al. Effect of adding nitrogen on microstructure and property of vanadium microalloyed reinforcing bar steel[J]. Journal of Iron and Steel Research, 2003,(2):45−50.
    [28]
    Zhang J, Wang F M, Li C R. Kinetics and formation mechanisms of intragranular ferrite in V-N microalloyed 600 MPa high strength rebar steel[J]. International Journal of Minerals, Metallurgy and Materials, 2016,23(4):417−424. doi: 10.1007/s12613-016-1251-y
    [29]
    翁建寅, 董瀚, 李北, 等. N含量对高氮CrMnMo奥氏体不锈钢组织和性能的影响[J]. 金属热处理, 2020, 45(1): 160-163.

    Weng Jianyin, Dong Han, Li Bei, et al. Effect of N content on microstructure and properties of CrMnMo austenitic stainless steel[J]. Heat Treatment of Metals, 20, 45(1): 160-163.
    [30]
    沈聪, 孔令男, 尹臣男, 等. 基于Q-P-C-T工艺的NM300耐磨钢组织、综合性能及残余应力调控[J]. 中南大学学报(自然科学版), 2022, 53(4): 1231-1240.

    Shen Cong, Kong Lingnan, Yi Chengnan, et al. Microstructure, comprehensive properties and residual stress control of NM300 wear-resistant steel based on Q-P-C-T process[J]. Journal of Central South University (Science and Technology), 2022, 53(4): 1231-1240.
    [31]
    Wang Shujing, Wang Tonghao, Wang Jian, et al. Effect of B-Ce composite microalloying on microstructure and mechanical properties of S31254 super austenitic stainless steel[J]. Heat Treatment of Metals, 2022,47(2):14−19. (王舒镜, 王同浩, 王剑, 等. B-Ce复合微合金化对S31254超级奥氏体不锈钢组织和力学性能的影响[J]. 金属热处理, 2022,47(2):14−19.

    Wang Shujing, Wang Tonghao, Wang Jian, et al. Effect of B-Ce composite microalloying on microstructure and mechanical properties of S31254 super austenitic stainless steel[J]. Heat Treatment of Metals, 2022, 47(2): 14-19.
    [32]
    Wang Changjun, Yong Qilong, Sun Xinjun, et al. Effects of Ti and Mn content on precipitation characteristics and strengthening mechanism of CSP Ti microalloyed steel[J]. Acta Metallurgica Sinica, 2011,47(12):1541−1549. (王长军, 雍岐龙, 孙新军, 等. Ti和Mn含量对CSP工艺Ti微合金钢析出特征与强化机理的影响[J]. 金属学报, 2011,47(12):1541−1549.

    Wang Changjun, Yong Qilong, Sun Xinjun, et al. Effects of Ti and Mn content on precipitation characteristics and strengthening mechanism of CSP Ti microalloyed steel[J]. Acta Metallurgica Sinica, 2011, 47(12): 1541-1549.
    [33]
    Zhang L, Song R K, Qu G X, et al. Effect of nitrogen on microstructure and mechanical properties of CrMnFeVTi6 high entropy alloy[J]. Transactions of Nonferrous Metals Society of China, 2021,31(8):2415−2427. doi: 10.1016/S1003-6326(21)65663-7
    [34]
    Li Long, Ding Hua, Yang Chunzhen, et al. Effect of controlled rolling and cooling process on microstructure and properties of low carbon niobium microalloyed steel[J]. Journal of Iron and Steel Research, 2006,18(7):46−51. (李龙, 丁桦, 杨春征, 等. 控轧控冷工艺对低碳铌微合金钢组织和性能的影响[J]. 钢铁研究学报, 2006,18(7):46−51.

    Li Long, Ding Hua, Yang Chunzhen, et al. Effect of controlled rolling and cooling process on microstructure and properties of low carbon niobium microalloyed steel[J]. Journal of Iron and Steel Research, 2006, 18(7): 46-51.
    [35]
    米永峰. VN微合金化500 MPa级高强抗震钢筋工艺研究[D]. 昆明: 昆明理工大学, 2011.

    Mi Yongfeng. Research on technology of VN microalloying 500 MPa high strength seismic reinforcement[D]. Kunming: Kunming University of Science and Technology, 2011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (121) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return