Volume 44 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Mu Pengwei, Lü Shufeng, Yang Peijie, Kang Xudong, Du Zhaoxin. Study on thermal deformation behavior and microstructure evolution of Ti-55511 alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 61-67. doi: 10.7513/j.issn.1004-7638.2023.05.010
Citation: Mu Pengwei, Lü Shufeng, Yang Peijie, Kang Xudong, Du Zhaoxin. Study on thermal deformation behavior and microstructure evolution of Ti-55511 alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 61-67. doi: 10.7513/j.issn.1004-7638.2023.05.010

Study on thermal deformation behavior and microstructure evolution of Ti-55511 alloy

doi: 10.7513/j.issn.1004-7638.2023.05.010
  • Received Date: 2023-01-01
    Available Online: 2023-11-04
  • Publish Date: 2023-10-31
  • The thermal deformation behavior of Ti-55511 alloy was studied by isothermal compression simulation method at the temperature of 700~950 ℃ and strain rate of 0.001~10 s−1. The results show that the softening mechanism of the alloy is very sensitive to the change of hot working parameters. Under the matching of high strain rate and low deformation temperature, the softening behavior of the alloy caused by dynamic recovery/recrystallization plays a dominant role in the competition with deformation hardening, which is manifested as the reduction of flow stress. In addition, recrystallization softening and deformation hardening reach an equilibrium state under the matching of high deformation temperature and low strain rate. By contrast, the power dissipation factor (η)is higher under the condition of low strain rate, the microstructure distribution is more uniform, and the thermal processing ability is good.
  • loading
  • [1]
    Banerjee D, Williams J C. Perspectives on titanium science and technology[J]. Acta Materialia, 2013,61(3):844−879. doi: 10.1016/j.actamat.2012.10.043
    [2]
    Viswanathan G B, Karthikeyan S R W. Creep behaviour of Ti-6Al-2Sn-4Zr-2Mo: II. Mechanisms of deformation[J]. Acta Materialia, 2002,50(20):4965−4980. doi: 10.1016/S1359-6454(02)00280-X
    [3]
    Nyakana S L, Fanning J C, Boyer R R. Quick reference guide for β titanium alloys in the 00s[J]. Journal of Materials Engineering and Performance, 2005,14(6):799−811. doi: 10.1361/105994905X75646
    [4]
    Weiss I, Semiatin S L. Flow behavior and globularization kinetics during hot working of Ti-6Al-4V with a colony alpha microstructure[J]. Materials Science and Engineering: A, 1998,243(1):46−65.
    [5]
    Chen Y Y, Du Z X, Xiao S L, et al. Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy[J]. Journal of Alloys and Compounds, 2014,586:588−592. doi: 10.1016/j.jallcom.2013.10.096
    [6]
    Jones N G, Dashwood R J, Dye D, et al. Thermomechanical processing of Ti-5Al-5Mo-5V-3Cr[J]. Materials Science and Engineering: A, 2008,490(1):369−377.
    [7]
    Jones N G, Dashwood R J, Dye D, et al. The flow behavior and microstructural evolution of Ti-5Al-5Mo-5V-3Cr during subtransus isothermal forging[J]. Metallurgical and Materials Transactions A, 2009,40(8):1944−1954. doi: 10.1007/s11661-009-9866-5
    [8]
    Dikovits M, Poletti C, Warchomicka F. Deformation mechanisms in the near-β titanium alloy Ti-55531[J]. Metallurgical and Materials Transactions A, 2014,45(3):1586−1596. doi: 10.1007/s11661-013-2073-4
    [9]
    Li L, Li M Q, Luo J. Mechanism in the β phase evolution during hot deformation of Ti-5Al-2Sn-2Zr-4Mo-4Cr with a transformed microstructure[J]. Acta Materialia, 2015,94:36−45. doi: 10.1016/j.actamat.2015.04.045
    [10]
    Li C M, Huang L, Zhao M J, et al. Hot deformation behavior and mechanism of a new metastable β titanium alloy Ti-6Cr-5Mo-5V-4Al in single phase region[J]. Materials Science and Engineering: A, 2021,814:141231. doi: 10.1016/j.msea.2021.141231
    [11]
    Shu Ying, Zeng Weidong, Zhou Jun, et al. A study of hot deformation behavior for BT20 aloy[J]. Materials Science and Technology, 2005,(1):66−69. (舒滢, 曾卫东, 周军, 等. BT20合金高温变形行为的研究[J]. 材料科学与工艺, 2005,(1):66−69.

    Shu Ying, Zeng Weidong, Zhou Jun, et al. A study of hot deformation behavior for BT20 aloy[J]. Materials Science and Technology, 2005(1): 66-69.
    [12]
    Mcqueen H J, Yue S, Ryan N D. Hot working characteristics of steels in austenitic state[J]. Journal of Materials Processing Technology, 1995,53(1):293−310.
    [13]
    王丽敏. 高强度硼钢板热冲压成形过程及数值模拟研究[D]. 南昌: 南昌大学, 2011.

    Wang Limin. Study on hot stamping process and numerical simulation of high strength boron steel sheet[D]. Nanchang: Nanchang University, 2011.
    [14]
    Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984,15(10):1883−1892. doi: 10.1007/BF02664902
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (74) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return