Volume 44 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Wu Meng, Hu Zhiping, Liu Rendong, Lin Chunqing, Gu Xingli, Xu Xin. Bainite design in quenching and partitioning steel based on numerical calculation[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 146-150. doi: 10.7513/j.issn.1004-7638.2023.05.022
Citation: Wu Meng, Hu Zhiping, Liu Rendong, Lin Chunqing, Gu Xingli, Xu Xin. Bainite design in quenching and partitioning steel based on numerical calculation[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 146-150. doi: 10.7513/j.issn.1004-7638.2023.05.022

Bainite design in quenching and partitioning steel based on numerical calculation

doi: 10.7513/j.issn.1004-7638.2023.05.022
  • Received Date: 2022-12-06
    Available Online: 2023-11-04
  • Publish Date: 2023-10-31
  • In this study, an optimum design of bainite phase in the commercial quenching and partitioning (Q&P) steel was achieved through the combined results from thermodynamics, kinetics analysis and the pilot experiments. Considering the complex microstructure evolution during partitioning stage of the Q&P treatment, especially the precipitation characteristics of carbides in martensite and their influence on the expansion result, the Boheman model was established and further revised based on the result of expansion experiment. A kinetic model of isothermal bainitic transformation was also set up to simulate this transformation accurately. According to the predicated result from the revised Bohemen model, the effect of the interaction between bainite and martensite on volume fraction and stability of retained austenite was analyzed. The results show that at a low quenching temperature, retained austenite between martensitic laths has a higher volume fraction and plays a dominant role during the deformation. On the contrary, under high temperature quenching condition the volume fraction of retained austenite in bainite is high.
  • loading
  • [1]
    Kang Yonglin. Lightweight vehicle, advanced high strength steel and energy-saving and emission reduction[J]. Iron and Steel, 2008,43(6):1−7. (康永林. 汽车轻量化先进高强钢与节能减排[J]. 钢铁, 2008,43(6):1−7. doi: 10.3321/j.issn:0449-749X.2008.06.001

    Kang Yong Lin. Lightweight vehicle, advanced high strength steel and energy-saving and emission reduction[J]. Iron and Steel, 2008, 43(6): 1-7 doi: 10.3321/j.issn:0449-749X.2008.06.001
    [2]
    Wang Li, Yang Xiongfei, Lu Jiangxin. Development of high strength steel sheets for lightweigt automobile[J]. Iron and Steel, 2006,41(9):4−11. (王利, 杨雄飞, 陆匠心. 汽车轻量化用高强度钢板的发展[J]. 钢铁, 2006,41(9):4−11. doi: 10.3321/j.issn:0449-749X.2006.09.001

    Wang Li, Yang Xiong Fei, Lu Jiang Xin. Development of high strength steel sheets for lightweigt automobile[J]. Iron and Steel, 2006, 41(9): 4-11 doi: 10.3321/j.issn:0449-749X.2006.09.001
    [3]
    Ma Mingtu, Shi M F. Advanced high strength steel and it’s applications in automobile industry[J]. Iron and Steel, 2004,39(7):68−72. (马鸣图, Shi M F. 先进的高强度钢及其在汽车工业中的应用[J]. 钢铁, 2004,39(7):68−72. doi: 10.3321/j.issn:0449-749X.2004.07.018

    Ma Ming Tu, Shi M F. Advanced high strength steel and it’s applications in automobile industry[J]. Iron and Steel, 2004, 39(7): 68-72 doi: 10.3321/j.issn:0449-749X.2004.07.018
    [4]
    Speer John, Matlock David. Design considerations for the next generation of advanced high strength sheet steels[C]//Lee H C. Proceedings of 3rd International Conference on Structural Steels. Seoul: Korean, Institute of Metals and Materials, 2006: 774-781.
    [5]
    Speer John, Matlock David, Cooman Bruno C De, et al. Carbon partitioning into austenite after martensite transformation. Acta Materialia, 2003, 51(9): 2611-2622.
    [6]
    Wan Yong, Huang Jian, Pan Yi, et al. Development of new materials and advanced manufacturing in 2011[J]. Advanced Materials Industry, 2012,(3):48−50. (万勇, 黄健, 潘懿, 等. 2011年新材料与先进制造领域发展回望[J]. 新材料产业, 2012,(3):48−50. doi: 10.3969/j.issn.1008-892X.2012.03.012

    Wan Yong, Huang Jiang, Pan Yi, et al. Development of New Materials and Advanced Manufacturing in 2011[J]. Advanced materials industry, 2012(3): 48-50 doi: 10.3969/j.issn.1008-892X.2012.03.012
    [7]
    Wan Yong, Huang Jian, Feng Ruihua, et al. Anaylysis of American “Material genome project”[J]. Advanced Materials Industry, 2012,(7):62−64. (万勇, 黄健、冯瑞华, 等. 浅析美国“材料基因组计划”[J]. 新材料产业, 2012,(7):62−64. doi: 10.3969/j.issn.1008-892X.2012.07.011

    Wan Yong, Huang Jian, Feng Rui Hua, et al. Anaylysis of American “Material genome project”[J]. Advanced materials industry, 2012(7): 62-64 doi: 10.3969/j.issn.1008-892X.2012.07.011
    [8]
    Van Bohemen Stefan, Sietsma Jilt. Modeling of isothermal bainite formation based on the nucleation kinetics[J]. International Journal of Materials Research, 2008,99(7):739−747. doi: 10.3139/146.101695
    [9]
    Kitahara Hiromoto, Ueji Rintaro, Tsuji Nobuhiro, et al. Crystallographic features of lath martensite in low-carbon steel[J]. Acta Materialia, 2006,54(5):1279−1288. doi: 10.1016/j.actamat.2005.11.001
    [10]
    Silva Elisabete, Xu Wei, Föjer Cecilia, et al. Phase transformations during the decomposition of austenite below Ms in a low-carbon steel[J]. Materials Characterization, 2014,95(3):85−93.
    [11]
    Bhadeshia Harry. The lower bainite transformation and the significance of carbide precipitation[J]. Acta Metallurgica, 1980,28(8):1103−1114. doi: 10.1016/0001-6160(80)90093-0
    [12]
    Clarke Amy, Speer John, Miller Michael, et al. Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment[J]. Acta Materialia, 2008,56(1):16−22. doi: 10.1016/j.actamat.2007.08.051
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(3)

    Article Metrics

    Article views (51) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return