Volume 44 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Yang Zhi, Tang Yunqi, Lu Chao, Gong Ming. Controllable hydrothermal synthesis and zinc storage properties of ammonium vanadium oxides[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 24-31. doi: 10.7513/j.issn.1004-7638.2023.06.004
Citation: Yang Zhi, Tang Yunqi, Lu Chao, Gong Ming. Controllable hydrothermal synthesis and zinc storage properties of ammonium vanadium oxides[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 24-31. doi: 10.7513/j.issn.1004-7638.2023.06.004

Controllable hydrothermal synthesis and zinc storage properties of ammonium vanadium oxides

doi: 10.7513/j.issn.1004-7638.2023.06.004
  • Received Date: 2023-06-27
    Available Online: 2024-01-11
  • Publish Date: 2023-12-30
  • Ammonium vanadium oxides are promising cathode materials for aqueous zinc-ion batteries due to their lightweight and high capacity, however, the controlled synthesis still remains a challenge. A series of ammonium vanadium oxides with different phases and morphologies were successfully synthesized by one-step hydrothermal method with the assistance of ethylene glycol (EG) regulation. The results showed that the product transformed from ribbon-shaped (NH4)2V6O16 to rod-like NH4V4O10 with the increase of EG addition from 0 mL to 1.6 mL, and then evolved into plate-like (NH4)2V4O9 with the addition of 18 mL EG. By Comparison, rod-like NH4V4O10 exhibited the best electrochemical performance, demonstrating a high specific capacity of 415.8 mAh/g at the current density of 0.1 A/g, and maintaining a high capacity retention of 94.1% after 12000 cycles at a high current density of 10 A/g. The excellent cycling stability of NH4V4O10 can be attributed to its stable layered structure formed by the interactions between oxygen atoms and NH4+ ions. Furthermore, the nanorod-like morphology and evident capacitive effect contribute to the promotion of its rate capability and kinetic properties.
  • loading
  • [1]
    Randau Simon, Weber Dominik A, Kötz Olaf, et al. Benchmarking the performance of all-solid-state lithium batteries[J]. Nature Energy, 2020,5(3):259−270. doi: 10.1038/s41560-020-0565-1
    [2]
    Ma Zhuo, Wang Kaixuan, Qiu Yunfeng, et al. Nitrogen and sulfur co-doped porous carbon derived from bio-waste as a promising electrocatalyst for zinc-air battery[J]. Energy, 2018,143:43−55. doi: 10.1016/j.energy.2017.10.110
    [3]
    Ma T, Wu S, Wang F, et al. Degradation mechanism study and safety hazard analysis of overdischarge on commercialized lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2020,12(50):56086−56094. doi: 10.1021/acsami.0c18185
    [4]
    Essl Christiane, Golubkov Andrey W, Gasser Eva, et al. Comprehensive hazard analysis of failing automotive lithium-ion batteries in overtemperature experiments[J]. Batteries, 2020,6(2):30. doi: 10.3390/batteries6020030
    [5]
    Alfaruqi Muhammad H, Mathew Vinod, Song Jinju, et al. Electrochemical zinc intercalation in lithium vanadium oxide: A high-capacity zinc-ion battery cathode[J]. Chemistry of Materials, 2017,29(4):1684−1694. doi: 10.1021/acs.chemmater.6b05092
    [6]
    Ming Jun, Guo Jing, Xia Chuan, et al. Zinc-ion batteries: Materials, mechanisms, and applications[J]. Materials Science and Engineering:R:Reports, 2019,135:58−84. doi: 10.1016/j.mser.2018.10.002
    [7]
    Cai Kexing, Luo Shaohua, Feng Jie, et al. Recent advances on spinel zinc manganate cathode materials for zinc-ion batteries[J]. Chemical Record, 2021,22(1):1−24.
    [8]
    Liu Zhexuan, Qin Liping, Chen Xingyu, et al. Improving stability and reversibility via fluorine doping in aqueous zinc–manganese batteries[J]. Materials Today Energy, 2021,22:100851. doi: 10.1016/j.mtener.2021.100851
    [9]
    Heng Yongli, Gu Zhenyi, Guo Jinzhi, et al. Research progresses on vanadium-based cathode materials for aqueous zinc-ion batteries[J]. Acta Physico-Chimica Sinica, 2021,37(3):17−32. (衡永丽, 谷振一, 郭晋芝, 等. 水系锌离子电池用钒基正极材料的研究进展[J]. 物理化学学报, 2021,37(3):17−32.

    Heng Yongli, Gu Zhenyi, Guo Jinzhi, et al. Research progresses on vanadium-based cathode materials for aqueous zinc-ion batteries[J]. Acta Physico-Chimica Sinica, 2021, 37(3): 17-32
    [10]
    Zong Quan, Du Wei, Liu Chaofeng, et al. Enhanced reversible zinc ion intercalation in deficient ammonium vanadate for high-performance aqueous zinc-ion battery[J]. Nano-Micro Letters, 2021,13(1):116. doi: 10.1007/s40820-021-00641-3
    [11]
    Bai Youcun, Zhang Heng, Hu Qin, et al. Tuning the kinetics of binder-free ammonium vanadate cathode via defect modulation for ultrastable rechargeable zinc ion batteries[J]. Nano Energy, 2021,90:106596. doi: 10.1016/j.nanoen.2021.106596
    [12]
    Prześniak-Welenc Marta, Nadolska Małgorzata, Nowak Andrzej P, et al. Pressure in charge neglected parameter in hydrothermal synthesis turns out to be crucial for electrochemical properties of ammonium vanadates[J]. Electrochimica Acta, 2020,339:135919. doi: 10.1016/j.electacta.2020.135919
    [13]
    Sarkar S, Veluri Ps, Mitra Sagar. Morphology controlled synthesis of layered NH4V4O10 and the impact of binder on stable high rate electrochemical performance[J]. Electrochimica Acta, 2014,132:448−456. doi: 10.1016/j.electacta.2014.03.144
    [14]
    Kang Wenpei, Zhao Chenhao, Liu Rui, et al. Ethylene glycol-assisted nanocrystallization of LiFePO4 for a rechargeable lithium-ion battery cathode[J]. Cryst Eng Comm, 2012,14(6):2245−2250. doi: 10.1039/c2ce06423e
    [15]
    Sheng Rui, Hou Lihua, Wang Lei, et al. Morphology-modulation of (NH4)2V4O9 nanostructures for enhanced electrochemical performance as cathode material for aqueous rechargeable zinc ion batteries[J]. Solid State Ionics, 2022,385:116023. doi: 10.1016/j.ssi.2022.116023
    [16]
    Lu Chao, Yang Zhi, Ding Yi, et al. Enhanced electrochemical performance of ammonium vanadate (NH4V4O10) cathode for rechargeable aqueous zinc-ion batteries by altering pH regulators[J]. Materials Today Communications, 2023,35:105993. doi: 10.1016/j.mtcomm.2023.105993
    [17]
    Fei Hailong, Wu Xiaomin, Li Huan, et al. Novel sodium intercalated (NH4)2V6O16 platelets: High performance cathode materials for lithium-ion battery[J]. Journal of Colloid and Interface Science, 2014,415:85−88. doi: 10.1016/j.jcis.2013.10.025
    [18]
    Sun Rui, Qin Zhaoxia, Liu Xinlong, et al. Intercalation mechanism of the ammonium vanadate (NH4V4O10) 3D decussate superstructure as the cathode for high-performance aqueous zinc-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2021,9(35):11769−11777.
    [19]
    Cui Fuhan, Hu Fang, Yu Xin, et al. In-situ tuning the NH4+ extraction in (NH4)2V4O9 nanosheets towards high performance aqueous zinc ion batteries[J]. Journal of Power Sources, 2021,492:229629. doi: 10.1016/j.jpowsour.2021.229629
    [20]
    Jeong Unyong, Wang Yuliang, Ibisate Marta, et al. Some new developments in the synthesis, functionalization, and utilization of monodisperse colloidal spheres[J]. Advanced Functional Materials, 2005,15(12):1907−1921. doi: 10.1002/adfm.200500472
    [21]
    Liu Hongying, Liang Xiaoping, Jiang Tao, et al. Analysis of structural morphological changes from 3D OM V2O5 film to V2O5 nanorods film and its application in electrochromic device[J]. Solar Energy Materials and Solar Cells, 2022,238:111627. doi: 10.1016/j.solmat.2022.111627
    [22]
    Zhang Yifu, Jiang Hanmei, Xu Lei, et al. Ammonium vanadium oxide [(NH4)2V4O9] sheets for high capacity electrodes in aqueous zinc ion batteries[J]. ACS Applied Energy Materials, 2019,2(11):7861−7869. doi: 10.1021/acsaem.9b01299
    [23]
    Meng Jiashen, Liu Ziang, Niu Chaojiang, et al. A synergistic effect between layer surface configurations and K ions of potassium vanadate nanowires for enhanced energy storage performance[J]. Journal of Materials Chemistry A, 2016,4(13):4893−4899. doi: 10.1039/C6TA00556J
    [24]
    Xu Lei, Zhang Yifu, Jiang Hanmei, et al. Facile hydrothermal synthesis and electrochemical properties of (NH4)2V6O16 nanobelts for aqueous rechargeable zinc ion batteries[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020,593:124621. doi: 10.1016/j.colsurfa.2020.124621
    [25]
    Esparcia Eugene A, Chae Munseok S, Ocon Joey D, et al. Ammonium vanadium bronze (NH4V4O10) as a high-capacity cathode material for nonaqueous magnesium-ion batteries[J]. Chemistry of Materials, 2018,30(11):3690−3696. doi: 10.1021/acs.chemmater.8b00462
    [26]
    Lu Chao, Yang Zhi, Wang Yujie, et al. Effect of hydrothermal reaction time on electrochemical properties of (NH4)2V4O9 as cathode material for aqueous zinc ion batteries[J]. Iron Steel Vanadium Titanium, 2022,43(4):62−68. (卢超, 杨智, 汪玉洁, 等. 水热反应时间对水系锌离子电池正极材料(NH4)2V4O9电化学性能的影响[J]. 钢铁钒钛, 2022,43(4):62−68.

    Lu Chao, Yang Zhi, Wang Yujie, et al. Effect of hydrothermal reaction time on electrochemical properties of (NH4)2V4O9 as cathode material for aqueous zinc ion batteries[J]. Iron Steel Vanadium Titanium, 2022, 43(4): 62-68
    [27]
    Zhu Kaiyue, Wu Tao, Huang Kevin. NaCa0.6V6O16· 3H2O as an ultra-stable cathode for Zn-ion batteries: The roles of pre-inserted dual-cations and structural water in V3O8 layer[J]. Advanced Energy Materials, 2019,9(38):1901968. doi: 10.1002/aenm.201901968
    [28]
    Lu Chao, Yang Zhi, Wang Yujie, et al. Effect of pH regulation on zinc-storage performance of (NH4)2V4O9 electrode materials[J]. China Nonferrous Metallurgy, 2022,51(5):1−7. (卢超, 杨智, 汪玉洁, 等. pH值调控对(NH4)2V4O9电极材料储锌性能的影响[J]. 中国有色冶金, 2022,51(5):1−7.

    Lu Chao, Yang Zhi, Wang Yujie, et al. Effect of pH regulation on zinc-storage performance of (NH4)2V4O9 electrode materials[J]. China Nonferrous Metallurgy. 2022, 51(5): 1-7
    [29]
    Pan Zikang, Ru Qiang, Zheng Minghui, et al. Construction of hierarchical flower-shaped (NH4) 2V3O8/rGO with enhanced zinc storage performance[J]. Chem Electro Chem, 2021,8(23):4618−4824.
    [30]
    Zheng Jiqi, Liu Chaofeng, Tian Meng, et al. Fast and reversible zinc ion intercalation in Al-ion modified hydrated vanadate[J]. Nano Energy, 2020,70:104519. doi: 10.1016/j.nanoen.2020.104519
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (75) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return