Volume 44 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Fan Xingping, Yang Cheng. Study on effect of rare earths on the mechanical and biological activity of HA/Ti composites[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 76-80. doi: 10.7513/j.issn.1004-7638.2023.06.011
Citation: Fan Xingping, Yang Cheng. Study on effect of rare earths on the mechanical and biological activity of HA/Ti composites[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 76-80. doi: 10.7513/j.issn.1004-7638.2023.06.011

Study on effect of rare earths on the mechanical and biological activity of HA/Ti composites

doi: 10.7513/j.issn.1004-7638.2023.06.011
  • Received Date: 2023-03-21
    Available Online: 2024-01-11
  • Publish Date: 2023-12-30
  • In order to further improve the properties of HA/Ti composite materials, using HA powder and commercial Ti powder as raw materials, adding a certain amount of different rare earth complexes (CeO2, LaF3 and SrO), a rare earth reinforced HA/Ti biological composite material was prepared by powder metallurgy method. The effects of three rare earth elements on the microstructure, mechanical properties, and biological activity of HA/Ti composites were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), metallographic microscopy and universal mechanical testing machines. The results show that the mechanical properties of the three composites obtained by adding 0.3% CeO2, LaF3, and SrO rare earth compounds are improved, with compressive strengths of 47, 91 MPa, and 40 MPa, respectively, while the compressive strength of the HA/Ti composite without adding rare earth compounds is only 34 MPa. Moreover, LaF3 can further improve the biological activity of the composite material, but adding CeO2 and SrO cannot improve its biological activity.
  • loading
  • [1]
    Hazwani M R, Lim L X, Lockman Z, et al. Fabrication of titanium-based alloys with bioactive surface oxide layer as biomedical implants: Opportunity and challenges[J]. Transactions of Nonferrous Metals Society of China, 2022,32:1−44. doi: 10.1016/S1003-6326(21)65776-X
    [2]
    Li F, Jiang X S, Shao Z Y, et al. Microstructure and mechanical properties of nano-carbon reinforced titanium matrix/hydroxyapatite biocomposites prepared by spark plasma sintering[J]. Nanomaterials, 2019,8(9):729.
    [3]
    Hindy A, Farahmand F, Tabatabaei F S. In vitro biological outcome of laser application for modification or processing of titanium dental implants[J]. Lasers in Medical Science, 2017, 32(5): 1197-1206.
    [4]
    Giner L, Mercadé M, Torrent S, et al. Double acid etching treatment of dental implants for enhanced biological properties[J]. Journal of Applied Biomaterials & Functional Materials, 2018,16(2):83−89.
    [5]
    Xia L, Xie Y, Fang B, et al. In situ modulation of crystallinity and nano-structures to enhance the stability and osseointegration of hydroxyapatite coatings on Ti-6Al-4V implants[J]. Chemical Engineering Journal, 2018,347:711−720. doi: 10.1016/j.cej.2018.04.045
    [6]
    Harjit S, Sunpreet S, Chander P, et al. Experimental investigation and parametric optimization of HA-TiO2 plasma spray coating on β-phase titanium alloy[J]. Materials Today:Proceedings, 2020,3(28):1340−1344.
    [7]
    Xie F X, Huang J B, Yang H, et al. Ti-10Mo/hydroxyapatite composites for orthopedic applications: Microstructure, mechanical properties and biological activity[J]. Materials Today Communications, 2021,29:102887. doi: 10.1016/j.mtcomm.2021.102887
    [8]
    Arifin A, Sulong A B, Muhamad N, et al. Material processing of hydroxyapatite and titanium alloy(HA/Ti) composite as implant materials using powder metallurgy: A review[J]. Materials & Design, 2014,55(6):165−175.
    [9]
    Egorov A, Smirnov V, Shvorneva L, et al. High-temperature hydroxyapatite-titanium interaction[J]. Inorganic Materials, 2010,46:168−171. doi: 10.1134/S0020168510020147
    [10]
    Zhang Guojun, Sun Yuanjun, Niu Rongmei, et al. The strengthening mechanism of rare earth lanthanum oxide doped molybdenum alloys[J]. Rare Metal Materials and Engineering, 2005,34(12):1926−1930. (张国君, 孙院军, 牛荣梅, 等. 稀土氧化镧掺杂钼合金的强化机制研究[J]. 稀有金属材料与工程, 2005,34(12):1926−1930. doi: 10.3321/j.issn:1002-185X.2005.12.020

    Zhang Guojun, Sun Yuanjun, Niu Rongmei, et al. The strengthening mechanism of rare earth lanthanum oxide doped molybdenum alloys[J]. Rare Metal Materials and Engineering, 2005, 34(12): 1926-1930. doi: 10.3321/j.issn:1002-185X.2005.12.020
    [11]
    Wang Bin, Liu Yong, Liu Yanbin, et al. Effects of LaH2 and LaB6 addition of microstructure and mechanical property of powder metallurgy Ti alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2011,16(1):136−142. (王斌, 刘咏, 刘延斌, 等. 稀土La对粉末冶金钛合金组织和力学性能的影响[J]. 粉末冶金材料科学与工程, 2011,16(1):136−142. doi: 10.3969/j.issn.1673-0224.2011.01.023

    Wang Bin, Liu Yong, Liu Yanbin, et al. Effects of LaH2 and LaB6 addition of microstructure and mechanical property of powder metallurgy Ti alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2011, 16(1): 136-142. doi: 10.3969/j.issn.1673-0224.2011.01.023
    [12]
    Tang Xia, Meng Yukun. Effect of different La contents in hydroxyapatite-coated Ti plate on cytocompatibility of attached cells[J]. Acta Academiae Medicinae Militaris Tertiae, 2011,33(24):2592−2595. (唐霞, 孟玉坤. 钛表面羟基磷灰石涂层含镧量对附着细胞生物学性能的影响[J]. 第三军医大学学报, 2011,33(24):2592−2595. doi: 10.16016/j.1000-5404.2011.24.031

    Tang Xia, Meng Yukun. Effect of different La contents in hydroxyapatite-coated Ti plate on cytocompatibility of attached cells[J]. Acta Academiae Medicinae Militaris Tertiae, 2011, 33(24): 2592-2595. doi: 10.16016/j.1000-5404.2011.24.031
    [13]
    Shao Zhenyi, Li Feng, Zhang Jianlin, et al. Research progress of various nano-materials reinforced and rare earth element doped Ti-HA composited[J]. Metallic Functional Materials, 2017,24(2):13−22. (邵甑胰, 李峰, 张建林, 等. 稀土掺杂纳米相增强Ti-HA复合材料研究进展[J]. 金属功能材料, 2017,24(2):13−22. doi: 10.13228/j.boyuan.issn1005-8192.2016075

    Shao Zhenyi, Li Feng, Zhang Jianlin, et al. Research progress of various nano-materials reinforced and rare earth element doped Ti-HA composited[J]. Metallic Functional Materials, 2017, 24(2): 13-22. doi: 10.13228/j.boyuan.issn1005-8192.2016075
    [14]
    吕凝磊. 掺锶生物玻璃及其与羟基磷灰石复合材料的制备及溶解性研究[D]. 长沙: 中南大学, 2014.

    Lü Ninglei. Fabrication of Sr-containing bioglass/HA composite and its solubility[D]. Changsha: Central South University, 2014.
    [15]
    Kokubo T, Takadama H. How useful is SBF in prediction in vivo bone bioactivity[J]. Biomaterials, 2006,27:2907−2915. doi: 10.1016/j.biomaterials.2006.01.017
    [16]
    Ning Congqin, Zhou Yu, Huang Congchun, et al. In vivo bioactivity of Ti/HA biocomposited by powder metallurgy methods[J]. Journal of Inorganic Materials, 2003,18(4):879−884. (宁聪琴, 周玉, 黄丛春, 等. 粉末冶金法制备Ti/HA生物复合材料的体内生物活性[J]. 无机材料学报, 2003,18(4):879−884.

    Ning Congqing, Zhou Yu, Huang Congchun, et al. In vivo bioactivity of Ti/HA biocomposited by powder metallurgy methods[J]. Journal of Inorganic Materials, 2003, 18(4): 879-884.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (49) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return