Volume 45 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Zhu Fuxing, Ma Zhanshan, Deng Bin, Mu Tianzhu, Qiu Kehui. A new process for preparing Ti-Al alloys from low-valance titanium chlorides slurry by direct electrochemical reduction[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 4-11. doi: 10.7513/j.issn.1004-7638.2024.01.002
Citation: Zhu Fuxing, Ma Zhanshan, Deng Bin, Mu Tianzhu, Qiu Kehui. A new process for preparing Ti-Al alloys from low-valance titanium chlorides slurry by direct electrochemical reduction[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 4-11. doi: 10.7513/j.issn.1004-7638.2024.01.002

A new process for preparing Ti-Al alloys from low-valance titanium chlorides slurry by direct electrochemical reduction

doi: 10.7513/j.issn.1004-7638.2024.01.002
  • Received Date: 2023-08-07
  • Publish Date: 2024-02-01
  • Owing to the lack of systematic research on electrochemical behaviors and unclear high-temperature oxidation resistance characteristics of Ti-Al alloys prepared from low-valence titanium chlorides slurry by the electrochemical reduction in molten salt, the electrochemical workstation and differential thermal gravimetric analyzer were used to study the electrochemical behavior of LTC slurry in the molten salt system and the high-temperature oxidation resistance characteristics of alloy products. The results show that LTC slurry can be directly electrochemically reduced to Ti-Al alloys, following a step-by-step reduction process: Ti3+→Ti2+, Al3+→Al, Ti3+/Al3+→Ti-Al alloys, and Ti2+→Ti. As the concentration of Ti3+ ions in molten salts increases, the composition of Ti-Al alloys changes as follows: Al/Al3Ti→Al3Ti2/Al5Ti2→AlTi/Al0.64Ti0.36→Al0.64Ti0.36/AlTi3→AlTi3→AlTi3/Ti→Ti. The variation law of product morphology is as follows: coarse dendrite→fine dendrite→fine spherical structure→coarse spherical aggregate→fine spherical aggregate→fine spherical porous structure→porous structure. With the increase of aluminum content and product density in Ti-Al alloys, the high-temperature oxidation resistance gradually enhances. After high-temperature melting, Al0.64Ti0.36/AlTi3 alloy shows α2 and γ phase structures with a higher Al content, and its high-temperature oxidation resistance is superior to commercial Ti48Al2Cr2Nb. The high-temperature oxidation process of Ti-Al alloys is as follows: Ti-Al alloys→titanium aluminate→rutile/alumina, and the formed oxide layer can effectively prevent further oxidation.
  • loading
  • [1]
    Wu L, Xia J, Cao H, et al. Improving the high-temperature oxidation resistance of TiAl alloy by anodizing in methanol/NaF solution[J]. Oxidation of Metals, 2018,90:617−631. doi: 10.1007/s11085-018-9858-1
    [2]
    Wu X. Review of alloy and process development of TiAl alloys[J]. Intermetallics, 2006,14(10-11):1114−1122. doi: 10.1016/j.intermet.2005.10.019
    [3]
    Chen Yuyong, Zhang Shuzhi, Kong Fantao, et al. Progress in β-solidifying γ-TiAl based alloys[J]. Chinese Journal of Rare Metals, 2012,36(1):154−160. (陈玉勇, 张树志, 孔凡涛, 等. 新型β-γTiAl合金的研究进展[J]. 稀有金属, 2012,36(1):154−160. doi: 10.3969/j.issn.0258-7076.2012.01.027

    Chen Yuyong, Zhang Shuzhi, Kong Fantao, et al. Progress in β-solidifying γ-TiAl based alloys[J]. Chinese Journal of Rare Metals, 2012, 361): 154160. doi: 10.3969/j.issn.0258-7076.2012.01.027
    [4]
    Zhang X, Li C, Wu M, et al. Atypical pathways for lamellar and twinning transformations in rapidly solidified TiAl alloy[J]. Acta Materialia, 2022,227:117718. doi: 10.1016/j.actamat.2022.117718
    [5]
    Ouyang Hongwu, Liu Yong, He Yuehui, et al. Development and application of TiAl base alloy valve[J]. Materials Reports, 2003,17(4):8−10. (欧阳鸿武, 刘咏, 贺跃辉, 等. TiAl基合金排气阀的研制和应用前景[J]. 材料导报, 2003,17(4):8−10.

    Ouyang Hongwu, Liu Yong, He Yuehui, et al. Development and application of TiAl base alloy valve[J]. Materials Reports, 2003, 174): 810.
    [6]
    Yuan Naiqiang, Xu Yong, Xu Rongfu, et al. Research on the casting process of high Nb-TiAl alloy exhaust valve[J]. Foundry Technology, 2018,39(12):2728−2731. (袁乃强, 徐勇, 许荣福, 等. 高Nb-TiAl合金排气阀铸造成形工艺研究[J]. 铸造技术, 2018,39(12):2728−2731.

    Yuan Naiqiang, Xu Yong, Xu Rongfu, et al. Research on the casting process of high Nb-TiAl alloy exhaust valve[J]. Foundry Technology, 2018, 3912): 27282731.
    [7]
    Yang Rui. Advances and challenges of TiAl base alloys[J]. Acta Metallurgica Sinica, 2015,51(2):129−147. (杨锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015,51(2):129−147. doi: 10.11900/0412.1961.2014.00396

    Yang Rui. Advances and challenges of TiAl base alloys[J]. Acta Metallurgica Sinica, 2015, 512): 129147. doi: 10.11900/0412.1961.2014.00396
    [8]
    Wang Mengguang, Sun Jianke, Chen Zhiqiang. Current status on melting and casting process of gama TiAl based alloy[J]. Titanium Industry Progress, 2010(4):1−4. (王孟光, 孙建科, 陈志强. TiAl基合金的熔炼与铸造成形工艺研究现状[J]. 钛工业进展, 2010(4):1−4.

    Wang Mengguang, Sun Jianke, Chen Zhiqiang. Current status on melting and casting process of gama TiAl based alloy[J]. Titanium Industry Progress, 20104): 14.
    [9]
    Yu Lanlan, Mao Xiaonan, Zhang Yingming, et al. Development of electron-beam cold hearth single melt process for titanium alloy ingots[J]. Titanium Industry Progress, 2009(2):14−18. (于兰兰, 毛小南, 张英明, 等. 电子束冷床炉单次熔炼钛合金铸锭研究进展[J]. 钛工业进展, 2009(2):14−18. doi: 10.3969/j.issn.1009-9964.2009.02.003

    Yu Lanlan, Mao Xiaonan, Zhang Yingming, et al. Development of electron-beam cold hearth single melt process for titanium alloy ingots[J]. Titanium Industry Progress, 20092): 1418. doi: 10.3969/j.issn.1009-9964.2009.02.003
    [10]
    Narayana P L, Li C L, Kim S W, et al. High strength and ductility of electron beam melted β stabilized γ-TiAl alloy at 800 ℃[J]. Materials Science and Engineering, 2019,756(5):41−45.
    [11]
    Hu D, Dolganov A, Ma M, et al. Development of the Fray-Farthing-Chen Cambridge process: towards the sustainable production of titanium and its alloys[J]. JOM, 2018,70(2):129−137. doi: 10.1007/s11837-017-2664-4
    [12]
    Yan B, Yan Y, Zhang M, et al. Electrochemical formation of titanium aluminum alloys from Ti2O3 in-situ chloridized by AlCl3 in chloride melts[J]. Electrochimical Acta, 2016,188:269−276. doi: 10.1016/j.electacta.2015.11.137
    [13]
    Lahiri A, Das R. Spectroscopic studies of the ionic liquid during the electrodeposition of Al–Ti alloy in 1-ethyl-3-methylimidazolium chloride melt[J]. Materials Chemistry & Physics, 2012,132(1):34−38.
    [14]
    He Hualin, Qiu Kehui, Sun Zhaohui, et al. Heat balance calculation for preparation of vanadium removal slurry[J]. Chinese Journal of Rare Metals, 2016,40(2):61−65. (何华林, 邱克辉, 孙朝晖, 等. 除钒浆液制备过程的热平衡计算[J]. 稀有金属, 2016,40(2):61−65.

    He Hualin, Qiu Kehui, Sun Zhaohui, et al. Heat balance calculation for preparation of vanadium removal slurry[J]. Chinese Journal of Rare Metals, 2016, 402): 6165.
    [15]
    Li Liang, Li Kaihua, Miao Qingdong, et al. Preparation and application of vanadium removing reagent in refining crude TiCl4[J]. Chinese Journal of Rare Metals, 2015,39(7):666−672. (李亮, 李开华, 苗庆东, 等. 四氯化钛精制除钒试剂的制备及应用研究[J]. 稀有金属, 2015,39(7):666−672.

    Li Liang, Li Kaihua, Miao Qingdong, et al. Preparation and application of vanadium removing reagent in refining crude TiCl4[J]. Chinese Journal of Rare Metals, 2015, 397): 666672.
    [16]
    Miao Qingdong, Li Kaihua, He Anxi, et al. Preparation and application of TiCl3 slurry used in Al-powder vanadium removal of crude TiCl4[J]. Chinese Journal of Rare Metals, 2017(41):1369−1373. (苗庆东, 李开华, 何安西, 等. 粗四氯化钛铝粉除钒用TiCl3浆液制备及应用[J]. 稀有金属, 2017(41):1369−1373.

    Miao Qingdong, Li Kaihua, He Anxi, et al. Preparation and application of TiCl3 slurry used in Al-powder vanadium removal of crude TiCl4[J]. Chinese Journal of Rare Metals, 201741): 13691373.
    [17]
    Zhu F X, Li L, Cheng X Z, et al. Direct electrochemical reduction of low titanium chlorides into titanium aluminide alloy powders from molten eutectic KCl–LiCl–MgCl2[J]. Electrochimical Acta, 2020,357:1−10.
    [18]
    Zhu F, Li K, Song W, et al. Composition and structure of Ti-Al alloy powders formed by electrochemical co-deposition in KCl-LiCl-MgCl2-TiCl3-AlCl3 molten salt[J]. Intermetallics, 2021,139:107341. doi: 10.1016/j.intermet.2021.107341
    [19]
    Kim S, Matsunaga N, Kuroda K, et al. Effect of [Al(DMSO2)3]3+ concentration on Al electrodeposition from AlCl3/dimethylsulfone baths[J]. Journal of Electrochemical Science and Technology, 2018,9(1):69−77. doi: 10.33961/JECST.2018.9.1.69
    [20]
    Zhu F, Li L, Song W, et al. Electrochemical synthesis of Ti-Al-V alloy by chlorination of Ti2O3 and V2O3 in AlCl3-containing molten chloride salt[J]. Journal Materials Research and Technology, 2021,13:1243−1253. doi: 10.1016/j.jmrt.2021.05.063
    [21]
    Song J, Mukherjee A. Influence of F- on the electrochemical properties of titanium ions and Al-Ti alloy electrodeposition in molten AlCl3-NaCl[J]. RSC Advances, 2020,6:82049−82056.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (52) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return