Volume 45 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Zhang Dongbin, Yuan Xinran, Xin Yanan, Bi Xinqiang, Liu Tianhao, Han Huiguo, Du Guangchao, Teng Aijun. Research on preparation of nano sodium vanadium phosphate and its sodium storage properties[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 12-18. doi: 10.7513/j.issn.1004-7638.2024.01.003
Citation: Zhang Dongbin, Yuan Xinran, Xin Yanan, Bi Xinqiang, Liu Tianhao, Han Huiguo, Du Guangchao, Teng Aijun. Research on preparation of nano sodium vanadium phosphate and its sodium storage properties[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 12-18. doi: 10.7513/j.issn.1004-7638.2024.01.003

Research on preparation of nano sodium vanadium phosphate and its sodium storage properties

doi: 10.7513/j.issn.1004-7638.2024.01.003
  • Received Date: 2023-09-21
  • Publish Date: 2024-02-01
  • Based on the severe preparation conditions, large particle size and poor conductivity, a new method to prepare sodium vanadium phosphate was proposed. By the formation of alkaline vanadium compounds, vanadium hydroxyloxide, and the in-situ anions exchange reactions between PO43–, F and OH, nano vanadium sodium phosphate was consequently obtained. With the help of XRD, SEM, FTIR, the formation mechanism of nano vanadium sodium phosphate was analyzed, and the synthesis conditions were optimized. The electrochemical test results show that the sodium vanadium phosphate in nanoscale improves the electron/ion transport capacity, and makes the prepared sodium vanadium phosphate show excellent sodium storage performances. When the current density is 10 mA/g, the specific discharge capacity is 106.68 mAh/g. At the same time, the specific discharge capacity of 80.85 mAh/g can be maintained after 20 charge and discharge cycles.
  • loading
  • [1]
    郑浩, 彭毅, 王仕伟, 等. V2O5/石墨烯纳米复合材料的合成及储钠性能研究[J]. 钢铁钒钛, 2023, 44(1): 32-37.

    Zheng Hao, Peng Yi, Wang Shiwei, et al. Synthesis and sodium storage properties of V2O5/graphene nanocomposites[J]. Iron Steel Vanadium Titanium, 2023, 44(1): 32-37.
    [2]
    Huang Yangyang, Zheng Yuheng, Li Xiang, et al. Electrode materials of sodium-ion batteries toward practical application[J]. ACS Energy Letters, 2018,7(3):1604−1612.
    [3]
    Ni Qiao, Bai Ying, Wu Feng, et al. Polyanion-type electrode materials for sodium-ion batteries[J]. Advanced Science, 2017,24(1):90−114.
    [4]
    周华, 宋永昌, 刘进, 等. 钒基电极材料在储能领域的研究进展[J]. 钢铁钒钛, 2022, 43(2): 73-80.

    Zhou Hua, Song Yongchang, Liu Jin, et al. Progress of vanadium-based electrode materials in energy storage[J]. Iron Steel Vanadium Titanium, 2022, 43(2): 73-80.
    [5]
    张东彬, 常智, 滕艾均, 等. VN基材料的电子结构调控和超电容性能研究[J]. 钢铁钒钛, 2022, 43(5): 45-51.

    Zhang Dongbin, Chang Zhi, Teng Aijun, et al. Regulation on electronic structure of VN-based materials for enhanced supercapacitor performances[J]. Iron Steel Vanadium Titanium, 2022, 43(5): 45-51.
    [6]
    Chen Gongxuan, Huang Qing, Wu Tian, et al. Polyanion sodium vanadium phosphate for next generation of sodium-ion batteries—a review[J]. Advanced Functional Materials, 2020,30:2001289. doi: 10.1002/adfm.202001289
    [7]
    Li Shuo, Dong Yifan, Xu Lin, et al. Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for highperformance symmetric sodium-ion batteries[J]. Advanced Materials, 2014,26:3545−3553. doi: 10.1002/adma.201305522
    [8]
    Hao Xiaogang, Liu Zigeng, Gong Zhengliang, et al. In situ XRD and solid state NMR characterization of Na3V2(PO4)2F3 as cathode material for lithium-ion batteries[J]. Scientia Sinica Chimica, 2012,42(1):38−46. (郝小罡, 刘子庚, 龚正良, 等. 锂离子电池正极材料Na3V2(PO4)2F3的原位XRD及固体核磁共振研究[J]. 中国科学:化学, 2012,42(1):38−46. doi: 10.1360/032011-177

    Hao Xiaogang, Liu Zigeng, Gong Zhengliang, et al. In situ XRD and solid state NMR characterization of Na3V2(PO4)2F3 as cathode material for lithium-ion batteries[J]. Scientia Sinica Chimica, 2012, 42(1): 38-46 doi: 10.1360/032011-177
    [9]
    Qi Yuruo, Tong Zizheng, Zhao Junmei, et al. Scalable room-temperature synthesis of multi-shelled Na3(VOPO4)2F microsphere cathodes[J]. Joule, 2018,2:2348−2363. doi: 10.1016/j.joule.2018.07.027
    [10]
    Jiang Yu, Zhou Xuefeng, Li Dongjun, et al. Highly reversible Na storage in Na3V2(PO4)3 by optimizing nanostructure and rational surface engineering[J]. Advanced Energy Materials, 2018,8(16):1800068. doi: 10.1002/aenm.201800068
    [11]
    Inoishi Atsushi, Setoguchi Naoko, Okada Shigeto, et al. Preparation of a single-phase all-solid-state battery via the crystallization of amorphous sodium vanadium phosphate[J]. Physical Chemistry Chemical Physics, 2022,24:27375−27379. doi: 10.1039/D2CP04328A
    [12]
    Peng Lele, Zhu Yue, Peng Xu, et al. Effective interlayer engineering of two-dimensional VOPO4 nanosheets via controlled organic intercalation for improving alkali ion storage[J]. Nano Letter, 2017,17:6273−6279. doi: 10.1021/acs.nanolett.7b02958
    [13]
    Fang Yongjin, Yu Xinyao, Lou Xiongwen(David). Nanostructured electrode materials for advanced sodium-ion batteries[J]. Matter, 2019,1(1):90−114. doi: 10.1016/j.matt.2019.05.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (78) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return