Experimental study on beneficiation of a titaniferous iron ore in Yunnan
-
摘要: 以云南某低品位钛铁矿为研究对象,原矿含钛(TiO2)仅为5.67%,大部分单独存在于钛铁矿中,占矿石中TiO2总量的83.56%,其余部分以类质同象的形式存在于磁铁矿和辉石中,占16.44%,脉石矿物主要包括石英、绿泥石等。针对该钛铁矿开展选矿试验,目的是通过选矿试验研究,寻求合理的工艺流程,对该资源的开发提供理论依据,可以使钛矿资源得到充分利用。首先查明了该矿石的化学组分、矿物组成,其次进行了磨矿细度、弱磁磁场强度、强磁磁场强度等工艺参数条件研究。在此基础上通过“磨矿-弱磁-强磁-强磁-分级摇床重选-中矿再磨再选”联合工艺流程,最终可获得TiO2品位为45.06%的钛精矿,回收率(对原矿)为53.73%;指标较好,实现了对目的矿物的有效回收。Abstract: A low-grade ilmenite ore in Yunnan province contains only 5.67% titanium (TiO2), and most of Ti exists in ilmenite alone, occupying 83.56% of the total TiO2 in the ore. The rest of 16.44% Ti exists in magnetite and pyroxene in a homogeneous form, and the vein minerals mainly include quartz and chlorite, etc. The beneficiation test for the ilmenite was carried out to seek a reasonable process flow and provide a theoretical basis for the development of this resource, which can make a sufficient use of titanium ore resources. Firstly, the chemical components and mineral compositions of the ore were identified. Then, the process parameters such as grinding fineness, weak magnetic field strength and strong magnetic field strength were studied. On this basis, the combined process of “grinding-weak magnetic separation-strong magnetic separation-strong magnetic separation-graded shaking table re-election-medium ore regrinding and re-election” was proposed. The titanium concentrate containing 45.06% TiO2 can be finally obtained, with the recovery rate (for the original ore) of 53.73%. The proposed process realizes effective recovery of the target minerals with a well index.
-
Key words:
- ilmenite /
- magnetic separation /
- gravity separation /
- TiO2 grade /
- recovery rate
-
表 1 原矿破碎至−2 mm粒级筛析结果
Table 1. Results of screen analysis of raw ore crushed to −2 mm of particle size
粒 级/mm 产率/% TiO2品位/% 回收率/% 2~1 28.49 5.48 27.79 1~0.45 21.16 5.75 21.65 0.45~0.2 18.25 7.68 24.95 0.2~0.074 7.79 8.02 11.12 0.074~0.037 9.6 6.36 10.86 0.037~0.019 5.05 2.12 1.90 0.019~0.010 2.84 1.52 0.77 0.010~0.005 0.94 1.32 0.22 −0.005 5.9 0.7 0.74 合计 100 5.67 100 表 2 原矿主要化学成分
Table 2. Main chemical compositions of raw ore
% TiO2 Fe Al2O3 S P MgO 5.67 12.36 13.69 0.009 0.18 5.33 CaO SiO2 V2O5 Na2O K2O As 9.10 45.87 0.093 1.48 0.73 <0.1 表 3 原矿矿物含量分析
Table 3. Mineral content of raw ore
矿物 矿物含量/% 矿物中钛(TiO2)的分布率/% 钛铁矿 8.5 83.56 磁铁矿 2.1 5.55 脉石矿物 89.4 10.89 表 4 弱磁场强条件试验结果
Table 4. Weak magnetic field strength test results
弱磁场强/T 产品名称 产率/% TiO2品位/% TiO2回收率/% 0.15 精 矿 1.79 14.65 4.58 尾 矿 98.21 5.57 95.42 0.20 精 矿 1.82 14.17 4.81 尾 矿 98.18 5.58 95.19 0.25 精 矿 2.62 15.08 6.72 尾 矿 97.38 5.64 93.28 0.30 精 矿 2.04 14.98 5.21 尾 矿 97.96 5.67 94.79 表 5 磁选磨矿细度试验结果
Table 5. Magnetic separation grinding fineness test results
细度/% 产品/% 产率/% TiO2品位/% TiO2回收率/% 50 强磁精矿 31.81 17.94 83.57 强磁尾矿 68.19 1.03 16.43 给矿 100 6.83 100 表 6 强磁磁场强度条件试验结果
Table 6. Test results of strong magnetic field strength condition
强磁选场强/T 产品 产率/% TiO2品位/% TiO2回收率/% 1.0 强磁精矿 31.73 16.03 82.27 强磁尾矿 68.27 0.95 17.73 给矿 100 6.18 100 表 7 两段强磁粗选抛尾试验结果
Table 7. Two-stage strong magnetic roughing tailing test results
产品名称 产率/% TiO2品位/% TiO2回收率/% 弱磁精矿 1.9 14.16 4.71 钛粗精矿 28.69 15.81 79.59 中矿 6.16 5.18 5.6 尾矿 63.25 0.91 10.1 给矿 100 5.7 100 表 8 强磁粗精矿进行分摇床精选的试验结果
Table 8. Experimental results of sub-shaker selection of strong magnetic coarse concentrate
产品名称 产率/% TiO2品位/% TiO2回收率/% 精矿合计 7.02 45.14 55.54 中矿合计 16.23 7.34 20.98 尾矿 5.64 4.29 4.25 强磁粗精矿 28.89 15.92 80.77 表 9 全流程工艺结果
Table 9. Full process test results
% 样品名称 产率 TiO2品位 TiO2回收率 精矿合计 8.63 45.06 58.43 中矿合计 27.77 6.24 30.57 尾矿 63.6 0.98 11.00 原矿 100 5.67 100 表 10 钛精矿化学多元素分析结果
Table 10. Chemical compositions of titanium concentrate
% Fe Al2O3 S MgO CaO P SiO2 TiO2 K2O Na2O As 35.97 1.01 0.0096 1.85 3.05 0.014 4.08 45.06 0.049 0.049 <0.10 -
[1] El-Sadek M H, Morsi M B, El-Barawy K, et al. Mechanochemical synthesis of Fe–TiC composite from Egyptian ilmenite ore[J]. International Journal of Mineral Processing, 2013,120:39−42. doi: 10.1016/j.minpro.2013.02.004 [2] Tao Tao, Li Peng, Hu Huiping, et al. Synthesis of titanium-based nanostructures from ilmenite[J]. Journal of Central South University, 2016,47(2):401−407. (陶涛, 李鹏, 胡慧萍, 等. 利用钛铁矿制备纳米钛基功能材料[J]. 中南大学学报(自然科学版), 2016,47(2):401−407. doi: 10.11817/j.issn.1672-7207.2016.02.007 [3] Chen Pan, Zhai Jihua, Wang Hongbin, et al. Experimental study on modification of collector for fine grained ilmenite[J]. Chinese Journal of Rare Metals, 2018,42(2):205−212. (陈攀, 翟计划, 王洪彬, 等. 微细粒钛铁矿浮选捕收剂改性试验研究[J]. 稀有金属, 2018,42(2):205−212. [4] Liu Jun. Development status and future of titanium dioxide[J]. Modern Salt and Chemical Industry, 2019,46(4):3−4. (刘军. 钛白粉发展现状与未来[J]. 现代盐化工, 2019,46(4):3−4. doi: 10.3969/j.issn.1005-880X.2019.04.002 [5] Bian Huan, Cao Xiaojing. Reaserarch status of ilmenite in ninerals processing[J]. Sichuan Nonferrous Metals, 2018,(3):3−5, 29. (卞焕, 曹小晶. 钛铁矿矿物加工研究现状[J]. 四川有色金属, 2018,(3):3−5, 29. doi: 10.3969/j.issn.1006-4079.2018.03.002 [6] Li Zheng, Chen Congxi, Ge Zhenhua, et al. Discussion on the development and utilization of titanium resources in China[J]. Homeland Resources Intelligence, 2020,(10):75−80. (李政, 陈从喜, 葛振华, 等. 中国钛矿资源开发利用形势探讨[J]. 国土资源情报, 2020,(10):75−80. doi: 10.3969/j.issn.1674-3709.2020.10.013 [7] Zhang Yuanjun, Xiong Dahe. Experimental study on the sorting of ultrafine-grained ilmenite by SLon magnetic separator[J]. Journal of Jiangxi University of Technology, 2009,30(5):18−20. (张元军, 熊大和. SLon磁选机分选超细粒级钛铁矿的试验研究[J]. 江西理工大学学报, 2009,30(5):18−20. [8] Yao Mingyan, Bai Limei, Jiang Jianguo. Industrial test of SLon vertical ring strong magnet machine in ilmenite mine in Montenegro[J]. Modern Mining, 2011,27(6):45−46. (姚明燕, 白丽梅, 江建国. SLon立环强磁机在黑山钛铁矿的工业试验[J]. 现代矿业, 2011,27(6):45−46. doi: 10.3969/j.issn.1674-6082.2011.06.016 [9] Wang Hongbin, Li Lijia, Shen Shuaiping. Pre-enrichment process study of micron-sized ilmenite[J]. Mining and Metallurgical Engineering, 2016,36(5):37−40. (王洪彬, 李丽匣, 申帅平. 微细粒级钛铁矿预富集工艺研究[J]. 矿冶工程, 2016,36(5):37−40. doi: 10.3969/j.issn.0253-6099.2016.05.010 [10] Gao Jianan, Zhang Yutian, Ji Cuicui. New process research on recovery of micro-fine grained ilmenite from Pan steel titanium processing plant[J]. Mining Machinery, 2016,(11):58−62. (高建安, 张雨田, 纪翠翠. 攀钢选钛厂微细粒级钛铁矿回收新工艺研究[J]. 矿山机械, 2016,(11):58−62. -