Synthesis and properties of Tb modified BiVO4/BiOCl composite photocatalysts
-
摘要: 采用液相沉淀法制备了不同Tb含量的BiVO4/BiOCl复合光催化剂,利用XRD、EDS等对催化剂进行了表征。以罗丹明B为目标降解污染物,采用单因素试验研究了Tb含量、光催化时间、催化剂用量、罗丹明B浓度等因素对样品光降解率的影响,并采用正交试验确定出最优方案。结果表明,纯钒酸铋为单斜晶型BiVO4;Tb含量为2%、4%的样品是单斜BiVO4/BiOCl混合相;Tb含量为6%~12%的样品是单斜相BiVO4/四方相BiVO4/BiOCl混合相,这说明引入稀土Tb能够促使BiVO4由单斜相转化为四方相。与纯BiVO4相比,所有含Tb的BiVO4样品的光降解率显著提高,且Tb元素的最佳含量(摩尔分数)为10%。在罗丹明B浓度为5 mg/L,催化剂用量为25 mg,光催化时间为2 h时,10%样品的光降解率高达100%,其光催化性能提高的原因可归因于稀土Tb的电子捕获效应以及形成的单斜相BiVO4/四方相BiVO4/BiOCl混相p-n异质结,有效提高了光生载流子的分离与传输,大大降低了电子-空穴对的复合,在污染废水处理方面具有极大的潜力和应用价值。Abstract: BiVO4/BiOCl composite photocatalysts with different contents of Tb were prepared by liquid phase precipitation method, and the catalysts were characterized by XRD and EDS. The photocatalytic performance of the photocatalysts was evaluated by degradation of rhodamine B under irradiation of the simulated sunlight. The effects of Tb content, photocatalytic time, catalyst dosage, rhodamine B concentration on the photodegradation efficiency of the samples were studied by single factor experiments, and the optimal scheme was determined by orthogonal tests. The results show that the pure BiVO4 belongs to monoclinic phase, and the samples with Tb content of 2% and 4% are mixture of monoclinic BiVO4/BiOCl phases. The samples with Tb content of 6%~12% are mixture of monoclinic BiVO4/tetragonal BiVO4/BiOCl phases. It indicates that the introduction of Tb can promote the transformation of BiVO4 from monoclinic phase to tetragonal phase. Compared with that of the pure BiVO4, the photodegradation efficiency of all samples containing Tb is improved greatly, and the optimal molar fraction of Tb is 10%. At the rhodamine B concentration of 5 mg/L, the catalyst dosage of 25 mg, and the photocatalytic time of 2 h, the photodegradation efficiency of the sample with 10% Tb can reach 100%. The improved photocatalytic performance may be attributed to the electron capture effect of Tb and the formation of monoclinic BiVO4/tetragonal BiVO4/BiOCl miscible p-n heterostructures, which effectively improve the separation and transmission of photoinduced carriers and suppress the recombination of electron-hole pairs. It has great potential and application value in the treatment of polluted wastewater.
-
Key words:
- BiVO4 /
- Tb /
- photocatalytic /
- degradation /
- liquid phase precipitation
-
表 1 正交试验因素及水平
Table 1. Orthogonal test factors and levels
水平 因素A:
罗丹明B
浓度/(mg·L−1)因素B:
催化剂
用量/mg因素C:
光催化
时间/h1 5 15 2.0 2 10 20 1.5 3 15 10 1.0 4 20 25 0.5 表 2 L16(45)正交试验方案及结果
Table 2. L16 (45) orthogonal test schemes and results
试验号 因素A 因素B 空列 因素C 空列 降解率/% 1 1(5) 1(15) 1 1(2.0) 1 99.16 2 1(5) 2(20) 2 2(1.5) 2 98.73 3 1(5) 3(10) 3 3(1.0) 3 98.20 4 1(5) 4(25) 4 4(0.5) 4 97.03 5 2(10) 1(15) 2 3(1.0) 4 78.37 6 2(10) 2(20) 1 4(0.5) 3 69.03 7 2(10) 3(10) 4 1(2.0) 2 89.32 8 2(10) 4(25) 3 2(1.5) 1 99.32 9 3(15) 1(15) 3 4(0.5) 2 39.88 10 3(15) 2(20) 4 3(1.0) 1 93.72 11 3(15) 3(10) 1 2(1.5) 4 71.56 12 3(15) 4(25) 2 1(2.0) 3 99.07 13 4(20) 1(15) 4 2(1.5) 3 87.19 14 4(20) 2(20) 3 1(2.0) 4 96.63 15 4(20) 3(10) 2 4(0.5) 1 26.23 16 4(20) 4(25) 1 3(1.0) 2 74.85 k1 0.98 0.76 0.79 0.96 0.80 k2 0.84 0.90 0.76 0.89 0.76 k3 0.76 0.71 0.84 0.86 0.88 k4 0.71 0.93 0.92 0.58 0.86 R 0.27 0.21 0.16 0.38 0.13 -
[1] Kudo A, Ueda H K, Mikami I. Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution[J]. Catalysis Letters, 1998,53(3−4):229−230. [2] Monfort O, Plesch Gustav. Bismuth vanadate-based semiconductor photocatalysts: A short critical review on the efficiency and the mechanism of photodegradation of organic pollutants[J]. Environmental Science and Pollution Research, 2018,25:19362−19379. doi: 10.1007/s11356-018-2437-9 [3] Kudo A, Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties[J]. Journal of the American Chemical Society, 1999,121(49):11459−11467. doi: 10.1021/ja992541y [4] Tokunaga S, Kato H, Kudo A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties[J]. Chemistry of Materials, 2001,13(12):4624−4628. doi: 10.1021/cm0103390 [5] Zhu Z, Yang C X, Hwang Y T, et al. Fuel generation through photoreduction of CO2 on novel Cu/BiVO4[J]. Materials Research Bulletin, 2020,130:110955. doi: 10.1016/j.materresbull.2020.110955 [6] Tayebi M, Lee B K. The effects of W/Mo-co-doped BiVO4 photoanodes for improving photoelectrochemical water splitting performance[J]. Catalysis Today, 2021,361:183−190. doi: 10.1016/j.cattod.2020.03.066 [7] Wang L Y, Bian Z Y. Photocatalytic degradation of paracetamol on Pd-BiVO4 under visible light irradiation[J]. Chemosphere, 2020,239:124815. doi: 10.1016/j.chemosphere.2019.124815 [8] Li Z L, Jin C Y, Wang M, et al. Novel rugby-like g-C3N4/BiVO4 core/shell Z-scheme composites prepared via low-temperature hydrothermal method for enhanced photocatalytic performance[J]. Separation and Purification Technology, 2020,232:115937. doi: 10.1016/j.seppur.2019.115937 [9] Wang Y L, Yu D, Wang W, et al. Synthesizing Co3O4-BiVO4/g-C3N4 heterojunction composites for superior photocatalytic redox activity[J]. Separation and Purification Technology, 2020,239:116562. doi: 10.1016/j.seppur.2020.116562 [10] (王敏, 朱彤, 吕春梅. 钒酸铋光催化剂及其应用[M]. 北京: 化学工业出版社, 2017.)Wang Min, Zhu Tong, Lv Chunmei. BiVO4 photocatalytic and application[M]. Beijing: Chemical Industy Press, 2017. [11] Xu H, Wu C D. Synthesis, characterization and photocatalytic activities of rare earth-loaded BiVO4 catalysts[J]. Applied Surface Science, 2009,256:597−602. doi: 10.1016/j.apsusc.2009.05.102 [12] Luo Y Y, Tan G Q, Dong G H, et al. A comprehensive investigation of tetragonal Gd-doped BiVO4 with enhanced photocatalytic performance under sun-light[J]. Applied Surface Science, 2016,364:156−165. doi: 10.1016/j.apsusc.2015.12.100 [13] Orona-Návar C, Levchuk I, Moreno-Andrés J, et al. Removal of pharmaceutically active compounds (PhACs) and bacteria inactivation from urban wastewater effluents by UVA-LED photocatalysis with Gd3+ doped BiVO4[J]. Journal of Environmental Chemical Engineering, 2020,8(6):104540. doi: 10.1016/j.jece.2020.104540 [14] Zhang Aiping, Zhang Jinzhi. Synthesis and activities of Ln-doped BiVO4(Ln=Eu, Gd and Er) photocatalysts[J]. Chinese Journal of Inorganic Chemistry, 2009,25(11):2040−2047. (张爱平, 张进治. Ln掺杂BiVO4(Ln=Eu、Gd、Er)光催化剂的制备和活性研究[J]. 无机化学学报, 2009,25(11):2040−2047. doi: 10.3321/j.issn:1001-4861.2009.11.027 [15] Zhang A P, Zhang J Z. Effects of europium doping on the photocatalytic behavior of BiVO4[J]. Journal of Hazardous Materials, 2010,173:265−272. doi: 10.1016/j.jhazmat.2009.08.079 [16] Pei Z Z, Jia H, Zhang Y L, et al. A one-pot hydrothermal synthesis of Eu/BiVO4 enhanced visible-light-driven photocatalyst for degradation of tetracycline[J]. Journal of Nanoscience and Nanotechnology, 2020,20:3053−3059. doi: 10.1166/jnn.2020.17446 [17] Liao Rui, Huang Heyan, Li Yuanli, et al. Preparation, crystal structure and spectral properties of bismuth vanadate nanocrystals doped with rare earth ions[J]. Journal of the Chinese Ceramic Society, 2020,48(5):739−744. (廖蕊, 黄鹤燕, 李园利, 等. 稀土离子掺杂钒酸铋纳米晶的制备、晶体结构特征及光谱性质[J]. 硅酸盐学报, 2020,48(5):739−744. [18] Luo Y Y, Tan G Q, Dong G H, et al. Effects of structure, morphology, and up-conversion on Nd-doped BiVO4 system with high photocatalytic activity[J]. Ceramics International, 2015,41(2):3259−3268. doi: 10.1016/j.ceramint.2014.11.016 [19] Monfort O, Sfaelou S, Satrapinskyy L, et al. Comparative study between pristine and Nb-modified BiVO4 films employed for photoelectrocatalytic production of H2 by water splitting and for photocatalytic degradation of organic pollutants under simulated solar light[J]. Catalysis Today, 2017,280:51−57. doi: 10.1016/j.cattod.2016.07.006 [20] Wang Weixuan, Chen Ruizhi, Wu Ping, et al. Photocatalytic properties of Nd3+-doped heterojunction ms/tz-BiVO4 under visible light[J]. Inorganic Chemicals Industry, 2018,50(2):75−78, 82. (王伟玄, 陈睿智, 伍平, 等. Nd3+掺杂ms/tz-BiVO4可见光催化性能研究[J]. 无机盐工业, 2018,50(2):75−78, 82. [21] Chen R Z, Wang W X, Jiang D M, et al. Hydrothermal synthesis of Nd3+-doped heterojunction ms/tz-BiVO4 and its enhanced photocatalytic performance[J]. Journal of Physics and Chemistry of Solids, 2018,117:28−35. doi: 10.1016/j.jpcs.2018.02.010 [22] Xu Jingwei, Li Zheng, Wang Zepu, et al. Morphology and photocatalytic performance regulation of Nd3+-doped BiVO4 with staggered band structure[J]. Journal of Inorganic Materials, 2020,35(7):789−795. (徐晶威, 李政, 王泽普, 等. 交错能带结构钕掺杂钒酸铋形貌与光催化性能调控[J]. 无机材料学报, 2020,35(7):789−795. [23] Wetchakun N, Chaiwichain S, Inceesungvorn B, et al. BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity[J]. ACS Applied Materials & Interfaces, 2012,4(7):3718−3723. [24] Xu J, Wang W Z, Wang J, et al. Controlled fabrication and enhanced photocatalystic performance of BiVO4@CeO2 hollow microspheres for the visible-light-driven degradation of rhodamine B[J]. Applied Surface Science, 2015,349:529−537. doi: 10.1016/j.apsusc.2015.04.195 [25] Gu S N, Li W J, Wang F Z, et al. Synthesis of buckhorn-like BiVO4 with a shell of CeOx nanodots: Effect of heterojunction structure on the enhancement of photocatalytic activity[J]. Applied Catalysis B: Environmental, 2015,170-171:186−194. doi: 10.1016/j.apcatb.2015.01.044 [26] Gu S N, Li W J, Wang F Z, et al. Substitution of Ce(III, IV) ions for Bi in BiVO4 and its enhanced impact on visible light-driven photocatalytic activities[J]. Catalysis Science & Technology, 2016,6:1870−1881. [27] (曹保卫. 钒酸铋基半导体光催化剂的水热合成光催化性能研究[D]. 西安: 西安建筑科技大学, 2014.)Cao Baowei. Controllable synthesis and photocatalytic activitiea research of bismuth vanadate[D]. Xi, an: Xi,an University of Science and Technology, 2014. [28] Luo Y Y, Tan G Q, Dong G H, et al. Structural transformation of Sm3+ doped BiVO4 with high photocatalytic activity under simulated sun-light[J]. Applied Surface Science, 2015,324:505−511. doi: 10.1016/j.apsusc.2014.10.168 [29] Zhu S W, Li Q G, Huttula M, et al. One-pot hydrothermal synthesis of BiVO4 microspheres with mixed crystal phase and Sm3+-doped BiVO4 for enhanced photocatalytic activity[J]. Journal of Materials Science, 2017,52:1679−1693. doi: 10.1007/s10853-016-0460-0 [30] Gu S N, Li W J, Bian Y Z, et al. Highly-visible-light photocatalytic performance derived from a lanthanide self-redox cycle in Ln2O3/BiVO4 (Ln: Sm, Eu, Tb) redox heterojunction[J]. The Journal of Physical Chemistry C, 2016,120(34):19242−19251. doi: 10.1021/acs.jpcc.6b06436 [31] Wang Y, Liu F Y, Hu Y J, et al. Microwave synthesis and photocatalytic activity of Tb3+ doped BiVO4 microcrystals[J]. Journal of Colloid and Interface Science, 2016,483:307−313. doi: 10.1016/j.jcis.2016.08.048 [32] Ma X M, Ma Z, Liao T, et al. Preparation of BiVO4/BiOCl heterojunction photocatalyst by in-situ transformation method for norfloxacin photocatalytic degradation[J]. Journal of Alloys and Compounds, 2017,702:68−74. doi: 10.1016/j.jallcom.2017.01.214 [33] Song L J, Pang Y Y, Zheng Y J, et al. Design, preparation and enhanced photocatalytic activity of porous BiOCl/BiVO4 microspheres via a coprecipitation-hydrothermal method[J]. Journal of Alloys and Compounds, 2017,710:375−382. doi: 10.1016/j.jallcom.2017.03.283 [34] Liu Jingjing. Preparation and performance of manganese dioxide/bismuth vanadate composite photocatalysts[J]. Chemical Research and Application, 2019,31(4):644−651. (刘景景. 二氧化锰/钒酸铋复合光催化剂的制备及性能[J]. 化学研究与应用, 2019,31(4):644−651. doi: 10.3969/j.issn.1004-1656.2019.04.009 -