Synthesis of defective titanium dioxide nanomaterial in nitric acid system and its application in photocatalysis
-
摘要: 以硝酸为形貌控制剂,采用溶胶凝胶法制备TiO2纳米材料。所获得的TiO2纳米材料为锐钛矿型,并具有缺陷态结构,粒径保持在5 nm以下。制备过程中,材料中晶体的生长遵循定向附着(Oriented attachment,OA)机制。将该锐钛矿型TiO2材料应用于亚甲基蓝的光催化降解中,实现了95%的催化降解效果,表现出较好的光催化性能。该工艺过程简单,制备中未使用高温工艺,非常易于工业化生产,为TiO2纳米光催化材料的低成本制备提供了一条简便的技术路径。Abstract: TiO2 nanomaterial was prepared by sol-gel method using nitric acid as the control agent. The obtained TiO2 nanomaterial is anatase and has defect structure, with the particle size below 5 nm. During the preparation of the material, the crystal growth complies the oriented attachment (OA) mechanism. The anatase TiO2 material was applied to the photocatalytic degradation of methylene blue, and 95% of the catalytic degradation efficiency can be achieved, showing good photocatalytic performance. It provides a simple technical path for preparation of TiO2 nano photocatalytic materials.
-
Key words:
- TiO2 /
- nanomaterials /
- nitric acid /
- defective /
- photocatalysis /
- degradation rate
-
表 1 由Scherrer公式计算的TiO2粒径
Table 1. TiO2 particle size calculated by Scherrer formula
峰位(2θ) 峰半高宽β/(°) 晶粒尺寸D/nm 25.354(101) 2.238 3.6 36.884(103) 2.039 4.07 48.077(200) 2.075 4.15 -
[1] Wu Jinming, Xing Huan. Facet-dependent decoration of TiO2 mesocrystals on TiO2 microcrystals for enhanced photoactivity[J]. Nanotechnology, 2020,31(2):025604. doi: 10.1088/1361-6528/ab4778 [2] Wang Guanyu, Guo Weijie, Xu Deping, et al. Graphene oxide hybridised TiO2 for visible light photocatalytic degradation of phenol[J]. Symmetry, 2020,12(9):1420. doi: 10.3390/sym12091420 [3] Tong Youjie, Fang Siyuan, Wang Chunling, et al. A unique black TiO2 created from CO-induced oxidation of defect-rich TiO2[J]. Journal of Physics and Chemistry of Solids, 2021:110053. [4] Wen Puhong, Yoshie Ishikawa, Hiroshi Itoh, et al. Topotactic transformation reaction from layered titanate nanosheets into anatase nanocrystals[J]. Journal of Physical Chemistry C, 2009,113(47):20275−20280. doi: 10.1021/jp908181e [5] Wu Binghui, Guo Changyou, Zheng Nanfeng, et al. Nonaqueous production of nanostructured anatase with high-energy facets[J]. Journal of the American Chemical Society, 2008,130(51):17563−17567. doi: 10.1021/ja8069715 [6] Wu Qingping, Huang Feng, Zhao Mingshi, et al. Ultra-small yellow defective TiO2 nanoparticles for co-catalyst free photocatalytic hydrogen production[J]. Nano Energy, 2016,24:63−71. doi: 10.1016/j.nanoen.2016.04.004 [7] Huang Feng, Zhang Hengzhong, Banfield Jillian F. The role of oriented attachment crystal growth in hydrothermal coarsening of nanocrystalline ZnS[J]. J. Phys. Chem. B, 2003,107(38):10470−10475. doi: 10.1021/jp035518e [8] (杨伟光. 暴露不同高表面能晶面的锐钛矿TiO2的控制合成及性能研究[D]. 上海: 上海大学, 2012: 3.)Yang Weiguang. Controlled synthesis and properties of anatase TiO2 exposed to different high surface energy crystal planes[D]. Shanghai: Shanghai University, 2012: 3. [9] Zhang Jing, Huang Feng, Zhang Lin. Progress of nanocrystalline growth kinetics based on oriented attachment[J]. Nanoscale, 2010,2(l):18−34. [10] Abdelkrim Chemseddine, Thomas Moritz. Nanostructuring titania: Control over nanocrystal structure, size, shape, andorganization[J]. European Journal of Inorganic Chemistry, 1999,2:235−245. -