Effect of annealing temperature on microstructure and properties of Ti-0.3Mo-0.8Ni titanium alloy sheet
-
摘要: 研究了6 mm厚Ti-0.3Mo-0.8Ni钛合金板材不同退火温度对组织和力学性能的影响。结果表明,600~700 ℃时α相主要发生回复再结晶过程,同时沿晶界形成链状Ti2Ni颗粒,屈服强度、抗拉强度逐渐降低,延伸率先增加后减少,650 ℃时,延伸率达到最大值22.5%,随着颗粒物的增加显著降低其力学性能;750~850 ℃时α相由部分再结晶组织转变为完全再结晶组织,β转变组织由条状转变为块状,屈服强度、抗拉强度、断后伸长率均逐渐降低,850 ℃时大幅下降至最低值,远低于标准要求;适用于6 mm厚Ti-0.3Mo-0.8Ni钛合金板材退火温度范围是600~650 ℃。
-
关键词:
- Ti-0.3Mo-0.8Ni /
- 退火温度 /
- Ti2Ni /
- β转变 /
- 延伸率
Abstract: The effect of annealing temperature on microstructure and properties of 6 mm Ti-0.3Mo-0.8Ni titanium sheet was studied. The results show that at 600~700 ℃, the recrystallization of α phase occurs and chain-like Ti2Ni particles are formed along the grain boundary, accompanying a decrease in the yield strength and tensile strength, with the elongation increasing first and then decreasing. A maximum 22.5% of the elongation can be obtained at 650 ℃, and the mechanical properties decrease significantly with the increase in amount of the particles. At 750~850 ℃, α phase transforms from partial recrystallization structure to complete recrystallization structure, and the β phase changes from long strip to block structure, with the yield strength, tensile strength and elongation after fracture decreased gradually. And the worst mechanical properties far below the standard are obtained at 850 ℃. The annealing temperature suitable for 6 mm Ti-0.3Mo-0.8Ni titanium sheet was determined at 600~650 ℃.-
Key words:
- Ti-0.3Mo-0.8Ni /
- annealing temperature /
- Ti2Ni /
- β transformation /
- elongation
-
表 1 能谱分析结果
Table 1. Chemical compositions of the selected positions in Fig. 3
% 退火温度/℃ 位置 Ti Ni Mo Fe 700 基体 99.30 0.29 0.41 0 白色颗粒 77.53 21.76 0.71 0.5 850 基体 99.67 0.19 0.14 0 β转变组织 97.08 2.07 0.75 0.1 表 2 试样显微硬度结果
Table 2. Hardness of the samples
试样温度/℃ 硬度(HV0.5) β转变组织硬度(HV0.01) 600 160 650 157 700 153 750 160 800 161 207 850 142 217 表 3 力学性能结果
Table 3. The mechanical properties of the samples
退火温度/℃ Rp0.2/MPa Rm/MPa A/% 600 512.0 547.1 18.0 650 438.2 500.1 22.5 700 379.1 490.0 17.5 750 412.8 499.3 21.0 800 398.9 495.2 17.5 850 229.6 388.8 12.0 -
[1] Su Juanhua, Shao Peng, Ren Fengzhang. Effect of forging temperature on microstructure and mechanical properties of TA10 titanium alloy[J]. Transactions of Materials and Heat Treatment, 2017,38(4):60−66. (苏娟华, 邵鹏, 任风章. 锻造温度对TA10钛合金组织和性能的影响[J]. 材料热处理学报, 2017,38(4):60−66. [2] Ge Wei, Deng Xingjia, Ding Chuncong, et al. Study on heat treatment system of TA10 alloy sheet[J]. Titanium Industry Progress, 2015,32(4):25−28. (葛伟, 邓宁嘉, 丁春聪, 等. TA10钛合金板材热处理工艺研究[J]. 钛工业进展, 2015,32(4):25−28. [3] Cheng Shuaipeng,Su Juanhua, Ren Fengzhang. Effect of heat treatment temperature after forging on microstructure and properties of TA10 titanium alloy[J]. Heat Treatment of Metals, 2016,41(10):158−161. (程帅朋, 苏娟华, 任风章. 锻后热处理温度对TA10钛合金组织和性能的影响[J]. 金属热处理, 2016,41(10):158−161. [4] Tao Huan, Sun Erju, Song Dejun, et al. Effects of solution and aging on microstructure and mechanical propertiesof TA10 titanium alloy[J]. Hot Working Technology, 2019,48(12):153−155. (陶欢, 孙二举, 宋德军, 等. 固溶时效对TA10钛合金组织和力学性能的影响[J]. 热加工工艺, 2019,48(12):153−155. [5] (崔忠圻.金属学与热处理[M].北京: 机械工业出版社, 1988: 200−218.)Cui Zhongqi. Metallograhy and heat treatment[M]. Beijing: China Machine Press, 1988: 200−218. [6] Wei Beiling. Influence of magnetic field environment on distribution of nickel element in TA10 ingot[J]. Hot Working Technology, 2014,43(19):75−77. (尉北玲. 磁场环境对TA10铸锭中镍成分的影响[J]. 热加工工艺, 2014,43(19):75−77. [7] (张翥, 王群骄, 莫畏, 等. 钛的金属学与热处理[M]. 北京: 冶金工业出版社, 2014: 17-23.)Zhang Zhu, Wang Qunjiao, Mo Wei,et al. Metallograhy and heat treatment of titanium[M]. Beijing: Metallurgical Industry Press, 2014: 17−23. [8] Shi Wen. Analysis on the difference of Ti-Mo-Ni alloy strip in China and abroad[J]. Industrial Thchnology Research, 2016,(3):20−22. (史文. 国内外Ti-Mo-Ni合金带材差异分析[J]. 工艺技术研究, 2016,(3):20−22. [9] (钟群鹏, 赵子华.断口学[M]. 北京: 高等教育出版社, 2005: 131−164.)Zhong Qunpeng, Zhao Zihua. Fractography[M]. Beijing: Higher Education Press, 2005: 131−164. -