High-titanium heavy slag concrete with electric furnace steel slag powder as admixture
-
摘要: 以攀枝花钢渣微粉为研究对象,分析研究了用其取代或部分取代粉煤灰作为混凝土掺和料的可行性和经济效益,并按50%、75%、100%的取代率取代粉煤灰配制强度等级为C30、C40的高钛重矿渣混凝土,测定其拌合物工作性能及28 、192 d抗压强度,并与不掺钢渣微粉的全粉煤灰高钛重矿渣混凝土对比分析。结果表明:钢渣微粉达到用于混凝土掺合料的相关指标要求,可作为掺合料应用到高钛重矿渣混凝土中且具有良好的经济效益;按实际生产用高钛重矿渣混凝土配合比设计强度为C30时,各取代率下高钛重矿渣混凝土拌合物工作性能良好且强度富余值较大,其中50%取代率下效果最好;当在原配合比下降低水泥强度等级时,各取代率、不同设计强度的高钛重矿渣混凝土28 d实测强度略低于设计强度,但后期强度增长较大,其中50%取代率下、设计强度为C30的高钛重矿渣混凝土192 d强度超过39 MPa,且工作性能良好,可用于非结构部位或对前期强度要求不高的构筑物。Abstract: The feasibility and economic benefits for Panzhihua electric furnace steel slag powder which partially or wholly replaces the fly ash as the admixture of concrete were analyzed and studied. The high-titanium heavy slag concrete having the strength grade of C30 and C40 was prepared with electric furnace steel slag powder which has 50%, 75%, and 100% of replacement rate for the fly ash, respectively. The working properties, 28 d and 192 d compressive strength of the concrete with electric furnace steel slag powder were tested and compared with those of the concrete with fly ash as the only admixture. The results show that the steel slag powder meets the relevant index requirements for concrete admixtures and can be used as the admixture of high-titanium heavy slag concrete with good economic benefits. The high-titanium heavy slag concrete with C30 strength, designed with different ratios of the electric furnace steel slag powder, has well working properties and strength surplus values, with the best properties at 50% of substitution rate. When the cement strength grade is decreased under the original mix ratio, the 28 d actual measured strength of the high-titanium heavy slag concrete with different substitution rates and design strengths is slightly lower than the design value, but the latter strength increases significantly. The 192 d strength of the high-titanium heavy slag concrete, with a design strength of C30 at a replacement rate of 50%, exceeds 39 MPa with good working performance, which can be used in non-structural parts or structures that do not require high previous strength.
-
表 1 钢渣主要化学成分
Table 1. Main chemical compositions of steel slag
% MgO TFe SiO2 TiO2 SO3 Cl− fcao 2.89 27.05 11.23 7.47 0.34 0.019 0.16 表 2 试验配合比
Table 2. Test mix ratio
强度等级 取代率/% 42.5水泥/kg 水/kg 粗骨料/kg 细骨料/kg 粉煤灰/kg 钢渣/kg 减水剂/kg C30 0 285 220 890 1030 105 0 8.2 C30 50 285 175.9 890 1030 52.5 52.5 8.2 C30 75 285 173.3 890 1030 26.25 78.75 8.2 C30 100 285 174.4 890 1030 0 105 8.2 C40 0 373 230 930 920 88 0 10.3 C40 50 373 188 930 920 44 44 10.3 C40 75 373 182.9 930 920 22 66 10.3 C40 100 373 180.6 930 920 0 88 10.3 表 3 钢渣微粉可行性试验研究结果
Table 3. Feasibility test results of steel slag powder
45 μm筛余/% 密度/(g·cm−3) 活性指数/% 流动度比/% 压蒸膨胀率/% 要求值 <30 ≥3.2 ≥55 ≥95 ≤0.5 实测值 27 3.687 61 105 0.073 表 4 实测28 d抗压强度值及工作性能
Table 4. Measured 28 d compressive strength value and working performance
设计强度 取代率/% 实测强度/MPa 坍落度/mm 和易性 C30 0 35.61 205 流动性、粘聚性、保水性良好,无泌水离析 C30 50 46.56 205 流动性、粘聚性、保水性良好,无泌水离析 C30 75 48.26 195 流动性、粘聚性、保水性良好,无泌水离析 C30 100 50.85 190 流动性、粘聚性、保水性良好,无泌水离析 C40 0 60.42 200 流动性、粘聚性、保水性良好,无泌水离析 C40 50 58.08 195 流动性、粘聚性、保水性良好,无泌水离析 C40 75 57.80 200 流动性、粘聚性、保水性良好,无泌水离析 C40 100 58.08 215 流动性、粘聚性、良好,振动中轻微离析 表 5 降低水泥标号后掺钢渣微粉高钛重矿渣混凝土工作性能及抗压强度实测值
Table 5. Measured values of working performance and compressive strength of high-titanium heavy slag concrete mixed with steel slag powder after reducing the cement grade
设计强度 取代率/% 28 d实测强度/MPa 192 d实测强度/MPa 坍落度/mm 和易性 C30 0 29.86 36.77 210 流动性、粘聚性、保水性良好,无泌水离析 C30 50 32.36 39.82 200 流动性、粘聚性、保水性良好,无泌水离析 C30 75 30.25 39.96 190 流动性、粘聚性、保水性良好,无泌水离析 C30 100 30.87 41.40 185 流动性、粘聚性、保水性良好,无泌水离析 C40 0 24.03 30.24 205 流动性、粘聚性、保水性良好,无泌水离析 C40 50 22.71 32.02 210 流动性、粘聚性、保水性良好,无泌水离析 C40 75 26.30 32.85 200 流动性、粘聚性、保水性良好,无泌水离析 C40 100 24.68 33.05 200 流动性、粘聚性、保水性良好,无泌水离析 表 6 每吨钢渣微粉加工成本
Table 6. Processing cost per ton of steel slag powder
钢渣砂 电 水 用量/t 单价/(元·t−1) 单位成本/元 用量/kWh 单价/(元·kWh−1) 单位成本/元 用量/t 单价/(元·t−1) 单位成本/元 1 35 35 48.3 0.49 23.67 0.24 1.79 0.43 压缩空气 人工工资/元 原料倒运费/元 场地、折旧费/元 合计/元 用量/m3 单价/(元·m−3) 单位成本/元 30 0.142 4.26 14.98 2.15 11.2 91.69 -
[1] Gao Benheng, Hao Yidang, Zhang Shulin, et al. Current situation and development trend of comprehensive utilization of steel slag[J]. Environmental Engineering, 2016,34(S1):776−779. (高本恒, 郝以党, 张淑苓, 等. 钢渣综合利用现状及发展趋势[J]. 环境工程, 2016,34(S1):776−779. [2] Zhu Guilin. Current status and development of comprehensive utilization of solid waste in china's iron and steel industry[J]. Iron & Steel Scrap of China, 2003,(3):34−41. (朱桂林. 中国钢铁工业固体废物综合利用的现状和发展[J]. 废钢铁, 2003,(3):34−41. [3] Sun Shushan, Yang Jingling, Zhu Guilin. Current situation and development trend of resource utilization of iron and steel slag in my country[J]. Iron & Steel Scrap of China, 2010,(1):10−12. (孙树杉, 杨景玲, 朱桂林. 我国钢铁渣资源化利用现状及发展趋势[J]. 中国废钢铁, 2010,(1):10−12. [4] Huang Yang, Wang Weiqing, Zheng Kui, et al. Research on Pangang steel slag powder used as cement active mixing material[J]. China Concrete and Cement Products, 2017,1(1):84−84. (黄阳, 王维清, 郑奎, 等. 攀钢钢渣粉用作水泥活性混合材料的研究[J]. 混凝土与水泥制品, 2017,1(1):84−84. doi: 10.3969/j.issn.1000-4637.2017.01.019 [5] Wang Wei. Experimental study on durability of high titanium heavy slag recycled concrete[J]. Iron Steel Vanadium Titanium, 2020,41(3):79−83. (王伟. 高钛重矿渣再生混凝土耐久性试验研究[J]. 钢铁钒钛, 2020,41(3):79−83. doi: 10.7513/j.issn.1004-7638.2020.03.013 [6] Shi Yan, Wang Jia, Chen Haiyan, et al. Influence of Panzhihua iron and steel slag powder on cementing performance[J]. Metal Mine, 2014,(7):177−180. (石岩, 王佳, 陈海焱, 等. 攀钢钢渣细粉对水泥胶凝性能的影响[J]. 金属矿山, 2014,(7):177−180. [7] Xu Bing, Zhang Guofang. The influence of Baosteel steel slag to the cement[J]. New Building Materials, 2013,40(5):73−76. (徐兵, 张国防. 宝钢钢渣对水泥混凝土性能的影响[J]. 新型建筑材料, 2013,40(5):73−76. doi: 10.3969/j.issn.1001-702X.2013.05.020 [8] Cui Xiaowei, Di Yanqing, Xu Zhaoyang. Preparation of high performance concrete with steel slag powder tailings[J]. China Concrete and Cement Products, 2016,(9):78−81. (崔孝炜, 狄燕清, 徐朝阳. 掺钢渣粉尾矿高性能混凝土的制备[J]. 混凝土与水泥制品, 2016,(9):78−81. doi: 10.3969/j.issn.1000-4637.2016.09.020 [9] Wang Zhe, Wang Qiang, Yang Jianwei, et al. Influence of steel slag-superfine fly ash composite mineral admixture on the properties of concret[J]. Concrete, 2015,(5):85−86, 89. (王喆, 王强, 杨建伟, 等. 钢渣-磨细粉煤灰复合矿物掺合料对混凝土性能的影响[J]. 混凝土, 2015,(5):85−86, 89. -

计量
- 文章访问数: 451
- HTML全文浏览量: 89
- PDF下载量: 32
- 被引次数: 0