Recirculating process of pellet exhaust gas from grate-kiln and numerical simulation
-
摘要: 针对链箅机回转窑环冷机生产过程中废气外排量大、余热利用率低的问题,在原有废气循环的基础上,提出了一种将过渡预热段的热废气循环到环冷机二段的废气循环工艺,并对新模式下的球团冷却过程进行模拟仿真研究。基于计算流体力学理论基础,结合局部非热力学平衡理论和磁铁矿氧化反应模型,采用CFD软件建立了数值仿真模型,揭示了废气循环对球团冷却的影响规律。研究结果表明,采用新的烟气循环系统之后,冷却二段的废气温度从511 ℃提高到523 ℃,提高了热利用效率。采用该废气循环模式,可减少废气排放11.5%,循环回收热量占球团生产热量总支出的3.45%。为球团生产进一步节能减排提供了新的方向,对于球团清洁生产具有重要意义。
-
关键词:
- 球团 /
- 链箅机-回转窑-环冷机 /
- 废气循环 /
- 数值模拟 /
- 节能减排
Abstract: Aiming at the problems of large exhaust gas discharge and low waste heat utilization rate of the grate-kiln ring cooler, a waste gas cycle technology that recycles the hot waste gas from the transitional preheating section to the second section of the circular cooling machine, was proposed. Then the pellet cooling process after using the waste gas cycle was simulated and studied. Based on the theory of computational fluid dynamics and combined with the local non-thermodynamic equilibrium theory and the magnetite oxidation reaction model, a numerical simulation model was established by CFD software to reveal the influence of exhaust gas cycle on pellet cooling. The results show that the exhaust gas temperature of the second cooling stage increases from 511 ℃ to 523 ℃ after adapting the flue gas circulation system, improving the heat utilization efficiency. The exhaust gas emission can be reduced by 11.5%, and the energy occupying 3.45% of the total heat expenditure for pellet production can be recovered. This study provides a new direction for further energy saving and emission reduction in pellet production, which is of great significance for pellet cleaner production.-
Key words:
- pellet /
- grate-kiln ring cooler /
- exhaust gas circulation /
- numerical simulation /
- energy saving
-
表 1 TPH段风箱废气组成
Table 1. Composition of bellows waste gas in TPH section
风箱号 O2/% NO×106 SO2×106 CO2/% 温度/℃ 6# 19.25 116 132 0.7 154 7# 19.85 70 65 0.5 170 8# 17.22 268 295 1.7 215 表 2 球团矿物性参数
Table 2. Pellet property parameters
球团矿密度 /(kg·m−3) 球团矿比表面积/(m2·m−3) 球团半径/mm 料床孔隙率/% 料床导热系数/
[J·(m·s·K)−1]2400 303 14 0.4 3.0 表 3 温度模拟值和实测值比较
Table 3. Comparison between the simulated and measured temperature values
模拟值/℃ 实测值/℃ 误差/% 一段烟罩中心 930 902 +3.1 二段烟罩中心 517 536 −3.5 三段烟罩中心 303 281 +7.8 表 4 废气循环对环冷机不同位置断面平均温度的影响
Table 4. Influence of exhaust gas cycle on average temperature of different positions on circular cooler
℃ 是否循环 项目 环冷一段 环冷二段 环冷三段 初始 结束 平均 初始 结束 平均 初始 结束 平均 未循环 球团矿 1238 684 961 684 334 509 334 132 233 烟气 1072 656 864 656 366 511 366 129 248 废气循环 球团矿 1238 684 961 684 359 522 359 144 252 烟气 1072 656 864 656 389 523 389 139 264 -
[1] Li Xinchuang. Ultra-low emission is a major green revolution in the history of iron and steel in China—Interpretation of opinions on promoting the implementation of ultra-low emission in iron and steel industry[J]. Chinese Iron and Steel Industry, 2019,(6):9−19. (李新创. 超低排放是中国钢铁史上的重大绿色革命--解读《关于推进实施钢铁行业超低排放的意见》[J]. 中国钢铁业, 2019,(6):9−19. doi: 10.3969/j.issn.1672-5115.2019.06.003 [2] (姜涛, 范晓慧, 李光辉. 铁矿造块学[M]. 长沙: 中南大学出版社, 2016.)Jiang Tao, Fan Xiaohui, Li Guanghui. Iron ore agglomeration[M]. Changsha: Central South University Press, 2016. [3] Xia Jianfang, Yu Xiangyang, Zhao Xianqiong. Optimization of process parameters based on minimum target of cooling energy consumption of sinter cooler[J]. Journal of Iron and Steel Research, 2016,28(1):13−19. (夏建芳, 喻向阳, 赵先琼. 基于环冷机冷却能耗最小目标的工艺参数优化[J]. 钢铁研究学报, 2016,28(1):13−19. [4] Feng J X, Liang K L, Sun Z B, et al. Cooling process of iron ore pellets in an annular cooler[J]. Int J Miner Metall Mater, 2011,18:285−291. doi: 10.1007/s12613-011-0435-8 [5] Croft T N, Cross M, Slone A K, et al. CFD analysis of an induration cooler on an iron ore grate-kiln pelletising process[J]. Minerals Engineering, 2009,22(9−10):859−873. doi: 10.1016/j.mineng.2009.03.011 [6] (宋昱. 球团矿在环冷机中冷却过程的数值模拟分析[D]. 唐山: 华北理工大学, 2019.)Song Yu. Numerical simulation and analysis of the cooling process of pellets in a circular cooler[D]. Tangshan: North China University of Science and Technology, 2019. [7] (刘伟, 范爱武, 黄晓明. 多孔介质传热传质理论与应用[M]. 北京: 科学出版社, 2006.)Liu Wei, Fan Aiwu, Huang Xiaoming. Theory and application of heat and mass transfer in porous media[M]. Beijing: Science Press, 2006. [8] Hinkley J, Waters A G, Litster J D. An investigation of pre-ignition air flow in ferrous sintering[J]. International Journal of Mineral Processing, 1994,42(1−2):37−52. doi: 10.1016/0301-7516(94)90019-1 [9] Qi Xia, Dai Fangqin. Gas resistance characteristics of a heat storage packed ball bed[J]. The Chinese Journal of Process Engineering, 2015,15(5):770−773. (祁霞, 戴方钦. 蓄热小球填充床的气体阻力特性[J]. 过程工程学报, 2015,15(5):770−773. doi: 10.12034/j.issn.1009-606X.215237 [10] Jiang Wujun, Ge Xiurun. Application of double energy equation to porous media of ventilated embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 2006,25(6):1170−1172. (蒋武军, 葛修润. 双能量方程在通风路基多孔介质中的应用[J]. 岩石力学与工程学报, 2006,25(6):1170−1172. doi: 10.3321/j.issn:1000-6915.2006.06.013 [11] Zhang X, Chen Z, Zhang J, et al. Simulation and optimization of waste heat recovery in sinter cooling process[J]. Applied Thermal Engineering, 2013,54(1):7−15. doi: 10.1016/j.applthermaleng.2013.01.017 [12] (赵加佩. 铁矿石烧结过程的数值模拟与试验验证[D]. 杭州: 浙江大学, 2012.)Zhao Jiapei. Numerical modelling of the iron ore sintering process and its experimental validation[D]. Hangzhou: Zhejiang University, 2012. [13] Sadrnezhaad S K, Ferdowsi A, Payab H. Mathematical model for a straight grate iron ore pellet induration process of industrial scale[J]. Computational Materials Ence., 2009,44(2):296−302. [14] Li Yang, Li Boquan, Zhang Xiliang, et al. Mathematical modeling and numerical simulation of pellet drying process[J]. Sintering and Pelletizing, 2018,43(4):33−39. (李洋, 李伯全, 张西良, 等. 球团干燥过程的数学建模与数值模拟研究[J]. 烧结球团, 2018,43(4):33−39. -