Study on as-cast microstructure and homogenization of wrought superalloy GH4065A
-
摘要: 应用SEM、DSC等试验方法研究了高温合金GH4065A电渣锭不同部位的铸态组织,并设计不同温度和时长的均匀化工艺制度处理样品,随后研究了不同均匀化制度下样品的微观组织演变和残余偏析指数变化规律。结果表明,铸态GH4065A中主要析出相为γ-γ’共晶相,硼化物相和TiN相,偏析较为严重的元素为Ti、Nb、Mo、W。经1160 ℃、10 h均匀化处理可以将析出相消除,并使Ti、Nb、Mo的残余偏析指数降至0.2左右,W的残余偏析指数降至0.4左右,是较合理的均匀化条件。生产现场由于铸锭尺寸较大,在1160 ℃炉内维持20 h左右均匀化时长是一个较为合理的均匀化制度。Abstract: The as-cast microstructure of the samples from multiple locations of an ESR ingot of superalloy GH4065A had been characterised by SEM and DSC, and then evolution of microstructure and residual segregation index of the samples treated under a variety of designed homogenization schemes had been investigated. The results show that γ-γ’ eutectic phase, borides and TiN are the major precipitated phases in the as-cast microstructure of GH4065A. Ti, Nb, Mo and W are the major segregated elements. After homogenization at 1 160 ℃ for 10 h, the precipitated phases mostly dissolves and residual segregation index of Ti, Nb, Mo reduces down to about 0.2, and index of W down to 0.4, which demonstrates homogenization at 1 160 ℃ for 10 h is reasonable treatment condition. Due to the large scale of ingots in industrial production, it is acceptable to immerse the ingot in the furnace of 1 160 ℃ for 20 h to achieve homogenization.
-
Key words:
- wrought superalloy /
- homogenization /
- microstructure /
- segregation characteristics
-
C Cr Ni Co Fe Ti Al Nb Mo W 0.03 16.0 余 13.0 1.0 3.7 2.1 0.7 4.0 4.0 表 2 GH4065A电渣重熔锭样品成分范围
Table 2. Composition range ofthe GH4065A samples from ESR ingot
% Al Co Cr Mo Nb Ti W Fe Ni 2.19~2.20 13.40~13.49 16.17~16.27 4.10~4.18 0.695~0.752 3.53~3.69 3.61~3.68 0.21~0.22 55.73~56.12 -
[1] Zhao Guangpu, Huang Shuo, Zhang Beijiang, et al. Microstructure control and mechanical properties of the newest nickel-based wrought superalloy GH4065A[J]. Journal of Iron and Steel Research, 2015,27(2):37−44. (赵光普, 黄烁, 张北江, 等. 新一代镍基变形高温合金GH40654A的组织控制与力学性能[J]. 钢铁研究学报, 2015,27(2):37−44. [2] Huang Shuo, Zhang Beijiang, Tian Qiang, et al. Isothermal and static oxidation behavior of superalloy GH4065A[J]. Journal of Iron and Steel Research, 2016,28(7):55−60. (黄烁, 张北江, 田强, 等. 高温合金GH4065A的恒温静态氧化行为[J]. 钢铁研究学报, 2016,28(7):55−60. [3] Heaney J A, Lasonde M L, Powell A M, et al. Development of a new cast and wrought alloy (Rene65) for high temperature disk applications[C]//Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives. TMS, Pittsburgh, USA, 2014: 67-77. [4] Bond B J, O’Brien C M, Russell J L, et al. Rene65 billet material for forged turbine components[C]// Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives. TMS, Pittsburgh, USA, 2014: 107-118. [5] Du Jinhui, Zhao Guangpu, Deng Qun, et al. Development of wrought superalloy in China[J]. Journal of Aeronautical Materials, 2016,6(3):27−39. (杜金辉, 赵光普, 邓群, 等. 中国变形高温合金研制进展[J]. 航空材料学报, 2016,6(3):27−39. doi: 10.11868/j.issn.1005-5053.2016.3.005 [6] Wang Zixing, Huang Shuo, Zhang Beijing, et al. Study on freckle of a high-alloyed GH4065 nickel base wrought superalloy[J]. Acta Metallurgica Sinica, 2019,55(3):417−426. (王资兴, 黄烁, 张北江, 等. 高合金化GH4065镍基变形高温合金点状偏析研究[J]. 金属学报, 2019,55(3):417−426. doi: 10.11900/0412.1961.2018.00218 [7] Liu Qiaomu, Huang Shunzhou, Liu Jia, et al. Progress and application of high temperature structure materials on aero-engine[J]. Gas Turbine Experiment and Research, 2014,27(4):51−56. (刘巧沐, 黄顺洲, 刘佳, 等. 高温材料研究进展及其在航空发动机上的应用[J]. 燃气涡轮试验与研究, 2014,27(4):51−56. doi: 10.3969/j.issn.1672-2620.2014.04.012 [8] Zhang Beijiang, Zhao Guangpu, Zhang Wenyu, et al. Investigation of high performance disc alloy GH4065 and associated advanced processing techniques[J]. Acta Metallurgica Sinica, 2015,51(10):1227−1234. (张北江, 赵光普, 张文云, 等. 高性能涡轮盘材料GH4065及其先进制备技术研究[J]. 金属学报, 2015,51(10):1227−1234. [9] Zhang Beijiang, Huang Shuo, Zhang Wenyu, et al. Recent development of nickel-based disc alloys and corresponding cast-wrought processing techniques[J]. Acta Metallurgica Sinica, 2019,55(9):1095−1114. (张北江, 黄烁, 张文云, 等. 变形高温合金盘材及其制备技术研究进展[J]. 金属学报, 2019,55(9):1095−1114. doi: 10.11900/0412.1961.2019.00078 [10] Semiatin S L, Kramb R C, Turner R E, et al. Analysis of the homogenization of a nickel-base superalloy[J]. Scripta Materialia, 2004,51:491−495. doi: 10.1016/j.scriptamat.2004.05.049 [11] Zhu Guanni, Bi Zhongnan, Dong Jianxin, et al. Microsegregation and homogenization of nickel base corrosion resistant alloy C-276 ingots[J]. Journal of University of Science and Technology Beijing, 2010,32(5):628−656. (朱冠妮, 毕中南, 董建新, 等. 镍基耐蚀合金C-276铸锭元素偏析和均匀化工艺[J]. 北京科技大学学报, 2010,32(5):628−656. [12] Xiang Xuemei, Jiang He, Dong Jianxin, et al. As-cast microstructure characteristic and homogenization of a newly developed hard-deformed Ni-based superalloy GH4975[J]. Acta Metallurgica Sinica, 2020,56(7):988−996. (向雪梅, 江河, 董建新, 等. 难变形高温合金GH4975的铸态组织及均匀化[J]. 金属学报, 2020,56(7):988−996. [13] (张先棹. 冶金传输原理[M]. 北京: 冶金工业出版社, 2005: 251.)Zhang Xianzhuo. Principles of transfer in metallurgy[M]. Beijing: Metallurgical Industry Press, 2005: 251. [14] Valencia J J, Quested P N. ASM Handbook[M]. ASM International, 2008: 468−481. -