Effect of warm rolling process on iron loss of Fe-6.5%Si electrical steel composite
-
摘要: 对采用包覆浇铸结合热塑性变形制备的,三层热轧态1.2 mm厚的6.5%高硅电工钢复合板进行450~650 ℃的中温轧制变形,并对温轧后的复合板进行微观结构观察和强磁场环境下的铁损测试,之后对复合板进行加热至1150 ℃保温30 min的扩散退火处理和相同磁场下的铁损测试,并对比了上述两组试验的显微结构变化及铁损变化。结果表明:1.2 mm厚的6.5%高硅电工钢复合板在450~650 ℃内加热,可以通过温轧变形减薄至0.37 mm;温轧工艺对复合板的铁损影响很大,在强磁场环境下差异更加明显;加热至1150 ℃保温30 min的扩散退火工艺可以显著降低温轧态复合板的铁损,最大可以降低98.9%。该课题的研究有助于改良三层6.5%高硅电工钢复合板的磁学性能。Abstract: Trilaminar composite of Fe-6.5%Si alloy with 1.2 mm thickness and produced by coated casting combined with thermomechanical process had been rolled in temperature of 450~650℃. Microstructure of the composite plate after warm rolling had been observed, in the same time, its iron loss had been tested. And then, the composite plate had been carried out on diffusion annealing process where it was reheated up to 1150℃ and hold for 30 min. Iron loss of the composite after diffusion annealing had been investigated. Results showed that the 6.5% high silicon electrical steel cladding plate could be rolled down to 0.37 mm by warm rolling deformation when it was heated at 450~650℃. Warm rolling process has a great influence on the iron loss of the composite plate, and the influence is more obvious in strong magnetic field environment. Diffusion annealing process of 1150℃ for 30 min can significantly reduce iron loss of the warm rolled composite plate, and the maximum reduction is 98.9%. This research is helpful to improve the magnetic properties of three-layer 6.5% high silicon electrical steel composite plates.
-
Key words:
- Fe-6.5%Si steel /
- composite plate /
- warm rolling /
- diffusion annealing /
- iron loss
-
表 1 热轧6.5%高硅电工钢复合板的化学成分
Table 1. Chemical compositions of Fe-6.5%Si steel composite after hot rolled
% Al Cr Mn P S Ca Si C Fe 外层(Q235低碳钢) 0.15 0.08 0.33 <0.02 <0.03 0.05 0.08 0.14 剩余 内层(Fe-10%Si合金) 0.22 0.05 0.18 <0.01 <0.01 0.07 10.08 0.02 剩余 表 2 6.5%高硅电工钢复合板温轧变形道次压下量
Table 2. Pass reductions of Fe-6.5%Si composite with warm rolling
板厚/mm 道次 变形量/% 1.20 0 0 1.00 1 17 0.92 2 8 0.90 3 2 0.74 4 18 0.67 5 9 0.64 6 4 0.53 7 17 0.47 8 11 0.45 9 4 0.40 10 11 0.38 11 5 0.37 12 3 注:温轧起始温度为650 ℃、终轧温度为450 ℃,采用红外测温仪对试样每次温轧后进行温度测量,温轧分四个阶段完成,保温时间依次为45、30、20、15 min。 表 3 温轧后6.5%高硅电工钢复合板的铁损测试
Table 3. Iron loss test of Fe-6.5%Si steel after warm rolling
试样名称 试样厚度/mm 铁损值/(W·kg−1) W10/50 W10/400 W2/1000 W2/10000 1# 0.37 9.32 92.85 196.77 362.55 2# 0.37 9.03 90.94 192.36 339.85 3# 0.37 5.39 37.67 131.25 224.73 4# 0.37 5.38 37.64 131.23 223.95 表 4 扩散退火后6.5%高硅电工钢复合板的铁损测试
Table 4. Iron loss of Fe-6.5%Si composite after diffusion annealing
试样名称 试样厚度/mm 铁损值/(W·kg−1) W10/50 W10/400 W2/1000 W2/10000 1# 0.38 2.32 22.58 2.17 102 2# 0.38 2.13 20.29 1.94 89 3# 0.38 1.68 17.06 1.33 64 4# 0.38 1.67 17.04 1.32 63 -
[1] Bozorth R M. Ferromagnetism[M]. New York: Van Nostrand, 1951. [2] Takada Y, Abe M, Masuda S, et al. Commercial scale production of Fe-6.5% Si sheet and its magnetic properties[J]. Journal of Applied Physics, 1988,64(10):5367−5369. doi: 10.1063/1.342373 [3] Li Ran, Shen Qiang, Zhang Lianmeng, et al. Magnetic properties of high silicon iron sheet fabricated by direct powder rolling[J]. Journal of Magnetism and Magnetic Materials, 2004,281(2):135−139. [4] Ros-Yanez T, Houbaert Y, Gomez Rodrıguez V. High-silicon steel produced by hot dipping and diffusion annealing[J]. Journal of Applied Physics, 2002,91(10):7857. doi: 10.1063/1.1449445 [5] Ji S, Han J, Liu J. Fabrication of 6.5%Si composite plate by coat casting and hot deformation processes[J]. Advanced Materials Research, 2014,902:7−11. doi: 10.4028/www.scientific.net/AMR.902.7 [6] Haiji H, Okada K, Hiratani T, et al. Magnetic properties and workability of 6.5% Si steel sheet[J]. Journal of Magnetism and Magnetic Materials, 1996,160:109−114. doi: 10.1016/0304-8853(96)00128-X [7] Li H, Liu H, Liu Y, et al. Effects of warm temper rolling on microstructure, texture and magnetic properties of strip-casting 6.5% Si electrical steel[J]. Journal of Magnetism and Magnetic Materials, 2014,370:6−12. doi: 10.1016/j.jmmm.2014.06.053 [8] Kubota T, Fujikura M, Ushigami Y. Recent progress and future trend on grain-oriented silicon steel[J]. Journal of Magnetism and Magnetic Materials, 2000,215:69−73. [9] Bolfarini C, Silva M, Jr A, et al. Magnetic properties of spray-formed Fe–6.5%Si and Fe–6.5%Si–1.0%Al after rolling and heat treatment[J]. Journal of Magnetism and Magnetic Materials, 2008,320(20):653−656. doi: 10.1016/j.jmmm.2008.04.104 [10] Phway T, Moses A. Magnetostriction trend of non-oriented 6.5% Si-Fe[J]. Journal of Magnetism and Magnetic Materials, 2008,320(20):611−613. doi: 10.1016/j.jmmm.2008.04.074 [11] Liang Y, Ge J, Fang X, et al. Hot deformation behavior and softening mechanism of Fe-6.5% Si alloy[J]. Materials Science and Engineering A, 2013,570:8−12. doi: 10.1016/j.msea.2013.01.070 [12] He Z. Electrical steels[M]. Beijing: Metallurgical Industry Press, 1997. [13] Fu H, Zhang Z, Pan H, et al. Warm/cold rolling processes for producing Fe-6.5% Si electrical steel with columnar grains[J]. International Journal of Minerals, Metallurgy, and Materials, 2013,20(6):535−540. doi: 10.1007/s12613-013-0762-z [14] Moses A, Ntatsis A, Kochmann T, et al. Magnetostriction in non-oriented electrical steels general trends[J]. Journal of Magnetism and Magnetic Materials, 2000,215-216(1):669−672. -