留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高钛钢板坯连铸凝固传热与压下量数值计算研究

吴晨辉 谢鑫 李阳 张敏 吴国荣 曾建华 何为

吴晨辉, 谢鑫, 李阳, 张敏, 吴国荣, 曾建华, 何为. 高钛钢板坯连铸凝固传热与压下量数值计算研究[J]. 钢铁钒钛, 2021, 42(6): 199-205. doi: 10.7513/j.issn.1004-7638.2021.06.029
引用本文: 吴晨辉, 谢鑫, 李阳, 张敏, 吴国荣, 曾建华, 何为. 高钛钢板坯连铸凝固传热与压下量数值计算研究[J]. 钢铁钒钛, 2021, 42(6): 199-205. doi: 10.7513/j.issn.1004-7638.2021.06.029
Wu Chenhui, Xie Xin, Li Yang, Zhang Min, Wu Guorong, Zeng Jianhua, He Wei. Numerical investigation on the solidification process and the theoretical reduction amount of high titanium steel continuous casting slab[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 199-205. doi: 10.7513/j.issn.1004-7638.2021.06.029
Citation: Wu Chenhui, Xie Xin, Li Yang, Zhang Min, Wu Guorong, Zeng Jianhua, He Wei. Numerical investigation on the solidification process and the theoretical reduction amount of high titanium steel continuous casting slab[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 199-205. doi: 10.7513/j.issn.1004-7638.2021.06.029

高钛钢板坯连铸凝固传热与压下量数值计算研究

doi: 10.7513/j.issn.1004-7638.2021.06.029
详细信息
    作者简介:

    吴晨辉(1985—),男,河北石家庄人,博士,工程师,通讯作者,主要从事钢铁冶金过程精炼、连铸方向研究,E-mail:wch_neu@126.com

  • 中图分类号: TF823,TF777

Numerical investigation on the solidification process and the theoretical reduction amount of high titanium steel continuous casting slab

  • 摘要: 高钛钢具有较高的耐磨性、韧性、强度及晶间抗腐蚀性,已得到较普遍应用。针对高钛钢板坯连铸过程凝固传热与理论压下量开展了数值计算研究,结果表明:拉速1.0 m/min时,高钛钢在结晶器出口位置坯壳厚度约15 mm,凝固终点距弯月面约20.4 m,两相区长度约10.8 m,拉速每增加0.1 m/min,结晶器出口坯壳厚度减小约0.2 mm,凝固终点向后移动1.7 m,两相区长度增加约0.9 m,不同拉速时,补缩两相区凝固收缩所需理论压下量基本相同,约为2.2 mm。
  • 图  1  铸坯横断面内计算域位置与二维凝固传热模型

    Figure  1.  Calculation domain position of the slab transverse section and the 2 D heat transfer model

    图  2  高钛钢冷却凝固过程相分率变化与热物性参数

    (a) 相分率;(b) 导热系数;(c) 密度;(d) 热焓

    Figure  2.  Phase fraction and thermal properties of high titanium steel during solidification

    图  3  理论压下量推导模型

    Figure  3.  Model for determining the theoretical reduction amount

    图  4  铸坯宽面中心温度计算值与测量值对比

    Figure  4.  Comparison between the predicted and the measured temperature of the slab wide surface center

    图  5  浇铸过程中高钛钢铸坯特征点温度与坯壳厚度

    Figure  5.  The temperature variation of typical positions of the slab and the shell thickness during continuous casting process

    图  6  浇铸过程高钛钢铸坯中心点固相率

    Figure  6.  The solid phase fraction of the slab center during continuous casting

    图  7  不同拉速时高钛钢铸坯宽面中心温度、中心固相率与坯壳厚度

    Figure  7.  Central temperature, central solid ratio and shell thickness of the broadside of high titanium steel slab at different tensile speeds

    图  8  不同拉速时铸坯理论压下量

    Figure  8.  Theoretical reduction amount of the casting steel with different casting speeds

    表  1  高钛钢连铸工艺参数

    Table  1.   Continuous casting parameters of high titanium steel

    断面尺寸/mm固相线温度/℃液相线温度/℃拉速/(m·min−1)浇铸温度/℃结晶器有效高度/mm结晶器回水温差/℃冷却区长度/m
    230×1600147715160.8~1.151546~15668006~8结晶器:0.8;
    二冷区: 37.0
    下载: 导出CSV
  • [1] Wang Xingjuan, Qu Shuo, Liu Ran, et al. Research status and prospect of special mold flux for high titanium steel[J]. Materials Reports, 2021,35(S1):467−472. (王杏娟, 曲硕, 刘然, 等. 高钛钢专用连铸保护渣研究现状及展望[J]. 材料导报, 2021,35(S1):467−472.
    [2] Wang Xingjuan, Jin Hebin, Zhu Liguang, et al. Effect of titanium content in steel on slag-metal reaction in continuous casting mold[J]. Iron and Steel, 2020,55(12):46−55. (王杏娟, 靳贺斌, 朱立光, 等. 钢中钛含量对连铸结晶器内渣金反应的影响[J]. 钢铁, 2020,55(12):46−55.
    [3] Weng Lei, Wu Hongyan, Lan Liangyun, et al. Study on seawater corrosion resistant ferrite matrix high-Ti steel[J]. Journal of Northeastern University(Natural Science), 2019,40(11):1568−1573. (翁镭, 吴红艳, 兰亮云, 等. 耐海水腐蚀用铁素体基低碳高钛钢的研究[J]. 东北大学学报(自然科学版), 2019,40(11):1568−1573. doi: 10.12068/j.issn.1005-3026.2019.11.009
    [4] Liang Xiaokai, Sun Xinjun, Yong Qilong, et al. Precipitation of TiC in high Ti steel[J]. Journal of Iron and Steel Research, 2016,28(9):71−75. (梁小凯, 孙新军, 雍岐龙, 等. 高钛钢中TiC析出机制[J]. 钢铁研究学报, 2016,28(9):71−75.
    [5] Zhang Ming, Yang Shanwu, Chi Lili, et al. Corrosion behavior of high titanium steel exposed in salt fog environment[J]. Materials for Mechanical Engineering, 2010,34(11):18−22. (张明, 杨善武, 迟丽丽, 等. 高钛钢在盐雾环境中的腐蚀行为[J]. 机械工程材料, 2010,34(11):18−22.
    [6] Pan Wenfeng, Cai Zhaozhen, Wang Shaobo, et al. Study and optimization of uniformity of continuous casting slab heat transfer in high temperature zones of secondary cooling[J]. China Metallurgy, 2021,31(8):23−34. (潘文峰, 蔡兆镇, 王少波, 等. 连铸板坯二冷高温区传热均匀性研究与优化[J]. 中国冶金, 2021,31(8):23−34.
    [7] Wu C H, Ji C, Zhu M Y. Analysis of the thermal contraction of wide-thick continuously cast slab and the weighted average method to design a roll gap[J]. Steel Research International, 2017:1600514.
    [8] 蔡开科. 连铸二冷区凝固传热及冷却控制[J]. 河南冶金, 2003(1): 3−7.

    Cai Kaike, Heat transfer and cooling control of continuous casting process in secondary cooing zones[J]. Henan Metallurgy, 2003(1): 3−7.
    [9] Ji C, Luo S, Zhu M, et al. Uneven solidification during wide-thick slab continuous casting process and its influence on soft reduction zone[J]. ISIJ International, 2014,54(1):103−111. doi: 10.2355/isijinternational.54.103
    [10] Chang Zhengsheng, Zhang Qiaoying, Yang Kezhi, et al. Effects of continuous casting process parameters on central equiaxed crystal ratio of oriented silicon steel slab[J]. China Metallurgy, 2020,30(1):58−62,87. (常正昇, 张乔英, 杨克枝, 等. 板坯连铸工艺参数对取向硅钢铸坯中心等轴晶率的影响[J]. 中国冶金, 2020,30(1):58−62,87.
    [11] Wang H M, Li G R, Lei Y C, et al. Mathematical heat transfer model research for the improvement of continuous casting slab temperature[J]. ISIJ International, 2005,45(9):1291−1296. doi: 10.2355/isijinternational.45.1291
    [12] Louhenkilpi S, Laitinen E, Nieminen R. Real-time simulation of heat transfer in continuous casting[J]. Metallurgical Transactions B, 1993,24(4):685−693. doi: 10.1007/BF02673184
    [13] Ueshima Y, Mizoguchi S, Matsumiya T, et al. Analysis of solute distribution in dendrites of carbon steel with δ/γ transformation during solidification[J]. Metallurgical Transactions B, 1986,17(4):845−859. doi: 10.1007/BF02657148
    [14] Harste K. Investigation of the shrinkage and the origin of mechanical tension during the solidification and successive cooling of cylindrical bars of Fe-C alloys [D]. German: Technical University of Clausthal, 1989.
    [15] Harste K, Suzuki T, Schwerdtfeger K. Thermomechanical properties of steel: viscoplasticity of γ iron and γ Fe-C alloys[J]. Materials Science and Thechnology, 1992,8(1):23−33.
    [16] Harste K, Schwerdtfeger K. Themomechanical properties of iron: viscoplasticity of ferrite and austenite-ferrite mixtures[J]. Materials Science and Technology, 1996,12(5):378−384. doi: 10.1179/026708396790165902
    [17] Han H N, Lee J E, Yeo T, et al. A finite element model for 2-dimensional slice of cast strand[J]. ISIJ International, 1999,39(5):445−454. doi: 10.2355/isijinternational.39.445
    [18] Wang W L, Zhu M Y, Cai Z Z, et al. Micro-segregation behavior of solute elements in the mushy zone of continuous casting wide-thick slab[J]. Steel Research International, 2012,83(12):1152−1162. doi: 10.1002/srin.201200102
    [19] Louhenkilpi S, Mäkinen M, Vapalahti S, et al. 3D steady state and transient simulation tools for heat transfer and solidification in continuous casting[J]. Materials Science and Engineering:A, 2005,413:135−138.
    [20] Zhang J, Chen D F, Zhang C Q, et al. Dynamic spray cooling control model based on the tracking of velocity and superheat for the continuous casting steel[J]. Journal of Materials Processing Technology, 2016,229:651−658. doi: 10.1016/j.jmatprotec.2015.10.015
    [21] Savage J, Pritchard W H. The problem of rupture of the billet in the continuous casting of steel[J]. Journal of the Iron and Steel Institute, 1954,178(3):269−277.
    [22] Nozaki T, Matsuno J, Murata K, et al. A secondary cooling pattern for preventing surface cracks of continuous casting slab[J]. Transactions of the Iron and Steel Institute of Japan, 1978,18(6):330−338. doi: 10.2355/isijinternational1966.18.330
    [23] Wu C H, Zeng J H, Wu G R, et al. A new method to determine the theoretical reduction amount for wide-thick slab during the mechanical reduction process[J]. Journal of Mining and Metallurgy Section B Metallurgy, 2021,57(1):125−136. doi: 10.2298/JMMB200622010W
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  268
  • HTML全文浏览量:  19
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-29
  • 录用日期:  2021-11-19
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回