留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷却工艺对薄板坯结晶器传热的影响

刘增勋 张路平 肖鹏程 张朝阳 朱立光

刘增勋, 张路平, 肖鹏程, 张朝阳, 朱立光. 冷却工艺对薄板坯结晶器传热的影响[J]. 钢铁钒钛, 2022, 43(4): 150-157. doi: 10.7513/j.issn.1004-7638.2022.04.023
引用本文: 刘增勋, 张路平, 肖鹏程, 张朝阳, 朱立光. 冷却工艺对薄板坯结晶器传热的影响[J]. 钢铁钒钛, 2022, 43(4): 150-157. doi: 10.7513/j.issn.1004-7638.2022.04.023
Liu Zengxun, Zhang Luping, Xiao Pengcheng, Zhang Zhaoyang, Zhu Liguang. Influence of cooling process on heat transfer of thin slab mold[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 150-157. doi: 10.7513/j.issn.1004-7638.2022.04.023
Citation: Liu Zengxun, Zhang Luping, Xiao Pengcheng, Zhang Zhaoyang, Zhu Liguang. Influence of cooling process on heat transfer of thin slab mold[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 150-157. doi: 10.7513/j.issn.1004-7638.2022.04.023

冷却工艺对薄板坯结晶器传热的影响

doi: 10.7513/j.issn.1004-7638.2022.04.023
基金项目: 国家自然科学基金资助项目(51904107);河北省自然科学基金优秀青年科学基金资助项目(E2020209005);河北省高等学校科学技术研究资助项目(BJ2019041)
详细信息
    作者简介:

    刘增勋(1966—),男,博士,教授,主要从事钢铁冶金相关研究,E-mail:liuzengxun@ncst.edu.cn

    通讯作者:

    肖鹏程(1985—),男,博士,副教授,主要从事连铸相关研究,E-mail:xiaopc@ncst.edu.cn

  • 中图分类号: TF777

Influence of cooling process on heat transfer of thin slab mold

  • 摘要: 为揭示高速连铸结晶器铸坯-铜壁-冷却水体系的传热机制,建立了FTSC结晶器内铸坯-铜壁-冷却水三维流-固-热耦合数值模型。分析了高拉速条件下结晶器冷却工艺对结晶器铜壁和冷却水温度分布的影响。结果表明:采用反向供水铜壁热面温度峰值比正向供水降低15 ℃,冷却水温度峰值降低14 ℃;提高冷却水速度可有效降低铜壁和冷却水温度;在保证冷却水不出现沸腾的条件下,增加供水压力对结晶器温度场变化没有影响;冷却水进水温度对铜壁整体和弯月面附近冷却水的温度影响较小。在结晶器下部低热流区,冷却水温度变化受进水温度的影响较为明显。冷却水道与铜壁热面间距对铜壁温度具有显著的影响,对于冷却水温度,冷却水道在距铜壁热面15 mm和25 mm处温度相差不大,距离热面为35 mm时冷却水温度明显降低。
  • 图  1  三维铜壁-铸坯模型

    Figure  1.  Three-dimensional copper wall-slab model

    图  2  三维铜壁-冷却水模型

    Figure  2.  Three-dimensional copper wall-cooling water model

    图  3  铜壁模拟温度和热电偶实测温度对比

    Figure  3.  Comparison of the simulated and measured temperature on copper wall

    图  4  供水方向对铜壁热面温度分布的影响

    Figure  4.  The influence of water supply direction on temperature distribution on hot surface of copper wall

    图  5  供水方向对靠近铜壁热面侧水道温度分布的影响

    Figure  5.  Influence of water supply direction on temperature distribution of water channel near hot surface of copper wall

    图  6  水速对铜壁热面温度分布的影响

    Figure  6.  The effect of water velocity on the temperaturedistribution on hot surface of copper wall

    图  7  水速对靠近铜壁热面侧冷却水温度分布的影响

    Figure  7.  The effect of water speed on the temperaturedistribution of cooling water near hot surface of copper wall

    图  8  供水压力对铜壁热面温度分布的影响

    Figure  8.  Effect of supply pressure on temperature distribution on hot surface of copper wall

    图  9  供水压力对靠近铜壁热面侧冷却水温度分布的影响

    Figure  9.  Effect of water supply pressure on temperature distribution of cooling water near hot surface of copper wall

    图  10  进水温度对铜壁热面温度分布的影响

    Figure  10.  Influence of inlet water temperature on temperature distribution on hot surface of copper wall

    图  11  进水温度对靠近铜壁热面侧冷却水温度分布的影响

    Figure  11.  Influence of inlet water temperature on temperature distribution of cooling water near the hot surface of copper wall

    图  12  水道位置对铜壁热面温度分布的影响

    Figure  12.  The influence of water channel position on temperature distribution on hot surface of copper wall

    图  13  水道位置对靠近铜壁热面侧冷却水温度分布的影响

    Figure  13.  The influence of water channel position on the temperature distribution of the cooling water near hot surface of copper wall

    表  1  结晶器的工艺参数

    Table  1.   Technical parameters of mold

    铜壁长度/mm冷却水道直径/mm冷却水速/(m·s−1)冷却水进水温度/℃供水压力/MPa拉坯速度/(m·min−1)浇注温度/℃
    1200148、10、12、1420、25、301.4、1.6 、1.861550
    下载: 导出CSV

    表  2  不同大气压下水的沸点

    Table  2.   The boiling point of water under different atmospheres pressure

    压力/MPa水的沸点/℃
    1.4194.1
    1.6200.4
    1.8206.1
    下载: 导出CSV

    表  3  铜的物性参数

    Table  3.   Physical parameters of copper

    密度/ (kg·m−3)热容/(J·kg−1·℃−1)热导率/(W·m−1·℃−1)
    8900390380
    下载: 导出CSV
  • [1] 徐旺. 冷却工艺对连铸结晶器铜壁传热的影响[D]. 唐山: 华北理工大学, 2020.

    Xu Wang. The effect of the cooling process on the heat transfer of the copper wall of the continuous casting mold [D]. Tangshan: North China University of Technology, 2020.
    [2] Liu Qilong, Liu Guoping, Fan Mancang, et al. Heat transfer analysis and cooling structure optimization of thin slab continuous casting mold narrow copper plate[J]. Iron Steel Vanadium Titanium, 2017,38(6):134−141. (刘启龙, 刘国平, 范满仓, 等. 薄板坯连铸结晶器窄面铜板传热分析及冷却结构优化[J]. 钢铁钒钛, 2017,38(6):134−141. doi: 10.7513/j.issn.1004-7638.2017.06.024

    Liu Qilong, Liu Guoping, Fan Mancang, et al. Heat transfer analysis and cooling structure optimization of thin slab continuous casting mold narrow copper plate[J]. Iron Steel Vanadium Titanium, 2017, 38(6): 134-141. doi: 10.7513/j.issn.1004-7638.2017.06.024
    [3] Zhou Jiayong, Peng Xianghe, Su Hezhou, et al. Temperature field analysis and structure optimization of slab continuous casting mold cooling copper plate[J]. China Metallurgy, 2006,16(3):27. (周家勇, 彭向和, 苏鹤州, 等. 板坯连铸结晶器冷却铜板的温度场分析及结构优化[J]. 中国冶金, 2006,16(3):27. doi: 10.3969/j.issn.1006-9356.2006.03.009

    Zhou Jiayong, Peng Xianghe, Su Hezhou, et al. Temperature field analysis and structure optimization of slab continuous casting mold cooling copper plate [J]. China Metallurgy, 2006, 16(3): 27. doi: 10.3969/j.issn.1006-9356.2006.03.009
    [4] 刘振领. 薄板坯结晶器内钢液流场和温度场的数值模拟[D]. 石家庄: 河北科技大学, 2010.

    Liu Zhenling. Numerical simulation of the molten steel flow field and temperature field in thin slab mold [D]. Shijiazhuang: Hebei University of Science and Technology, 2010.
    [5] Hou Xiaoguang. Exploring the measurement of the temperature difference and water volume adjustment of mold cooling water in continuous steel casting[J]. China Manganese Industry, 2017,35(3):193. (侯小光. 探究连续铸钢中结晶器冷却水温差的测量和水量调节[J]. 中国锰业, 2017,35(3):193. doi: 10.14101/j.cnki.issn.1002-4336.2017.03.056

    Hou Xiaoguang. Exploring the measurement of the temperature difference and water volume adjustment of mold cooling water in continuous steel casting[J]. China Manganese Industry, 2017, 35(3): 193. doi: 10.14101/j.cnki.issn.1002-4336.2017.03.056
    [6] 杨刚. 薄板坯连铸结晶器铜板三维传热及温度场分析[D]. 沈阳: 东北大学, 2006.

    Yang Gang. Three-dimensional heat transfer and temperature field analysis of thin slab continuous casting mold copper plate[D]. Shenyang: Northeastern University, 2006.
    [7] Wang Zepeng, Cai Zongying, Zhu Liguang, et al. Three-dimensional heat transfer simulation of billet continuous casting mold[J]. Foundry Technology, 2017,38(11):2753. (王泽鹏, 蔡宗英, 朱立光, 等. 方坯连铸结晶器三维传热模拟[J]. 铸造技术, 2017,38(11):2753. doi: 10.16410/j.issn1000-8365.2017.11.053

    Wang Zepeng, Cai Zongying, Zhu Liguang, et al. Three-dimensional heat transfer simulation of billet continuous casting mold [J]. Foundry Technology, 2017, 38 (11): 2753. doi: 10.16410/j.issn1000-8365.2017.11.053
    [8] 谢鑫, 陈登福, 吕奎, 等. 不同拉速下结晶器水缝传热的数值模拟研究[C]//第十八届全国炼钢学术会议论文集. 西安: 中国金属学会, 2014.

    Xie Xin, Chen Dengfu, Lv Kui, et al. Mathematical simulation on the heat transfer in mould slots at different casing speeds [C]//Proceedings of the 18th National Steelmaking Academic Conference. Xi, an: Chinese Society of Metals, 2014.
    [9] Pei Hongbin, Zhang Hui, Xi Changsuo, et al. Study on the characteristics of the slab continuous casting and bonding of the blowout slab shell and the temperature change of the mold copper plate[J]. Iron Steel Vanadium Titanium, 2012,33(6):45−48. (裴红彬, 张慧, 席常锁, 等. 板坯连铸粘结漏钢坯壳特征及结晶器铜板温度变化研究[J]. 钢铁钒钛, 2012,33(6):45−48. doi: 10.7513/j.issn.1004-7638.2012.06.010

    Pei Hongbin, Zhang Hui, Xi Changsuo, et al. Study on the characteristics of the slab continuous casting and bonding of the blowout slab shell and the temperature change of the mold copper plate[J]. Iron Steel Vanadium Titanium, 2012, 33(6): 45-48. doi: 10.7513/j.issn.1004-7638.2012.06.010
    [10] Han Zhiwei, Feng Ke, Wang Yong, et al. Finite element simulation of heat transfer slab continuous casting process[J]. Computer Aided Engineering, 2006,15(z1):435. (韩志伟, 冯科, 王勇, 等. 板坯连铸凝固传热过程的有限元模拟[J]. 计算机辅助工程, 2006,15(z1):435. doi: 10.3969/j.issn.1006-0871.2006.z1.137

    Han Zhiwei, Feng Ke, Wang Yong, et al. Finite element simulation of heat transfer slab continuous casting process[J]. Computer Aided Engineering, 2006, 15(z1): 435. doi: 10.3969/j.issn.1006-0871.2006.z1.137
    [11] Lyu Peisheng, Wang Wanlin, Zhang Haihui. Mold simulator study on the initial solidification of molten steel near the corner of continuous casting mold[J]. Metallurgical and Materials Transactions B, 2017, 48:247-259.
    [12] Wang Dong. Analysis of heat conduction based on Fourier's law[J]. Science and Technology Innovation, 2019,22(13):45. (王栋. 基于傅里叶定律对热传导的分析[J]. 科学技术创新, 2019,22(13):45.

    Wang Dong. Analysis of heat conduction based on Fourier's law [J]. Science and Technology Innovation, 2019, 22(13): 45.
    [13] Yang Changlin, Gao Qi, Yao Chenggong, et al. Optimal design of copper plate sink for slab continuous casting mold[J]. China Metallurgy, 2021,31(3):10. (杨昌霖, 高琦, 姚成功, 等. 板坯连铸结晶器铜板水槽的优化设计[J]. 中国冶金, 2021,31(3):10. doi: 10.13228/j.boyuan.issn1006-9356.20200459

    Yang Changlin, Gao Qi, Yao Chenggong, et al. Optimal design of copper plate sink for slab continuous casting mold [J]. China Metallurgy, 2021, 31(3): 10. doi: 10.13228/j.boyuan.issn1006-9356.20200459
    [14] Yuan Lintao, Zhang Hui, Shi Zhe, et al. Study on the heat transfer behavior of the wide-surface copper plate of the thin slab mold[J]. Iron Steel Vanadium Titanium, 2013,34(5):58−62. (袁林涛, 张慧, 施哲, 等. 薄板坯结晶器宽面铜板传热行为研究[J]. 钢铁钒钛, 2013,34(5):58−62. doi: 10.7513/j.issn.1004-7638.2013.05.012

    Yuan Lintao, Zhang Hui, Shi Zhe, et al. Study on the heat transfer behavior of the wide-surface copper plate of the thin slab mold[J]. Iron Steel Vanadium Titanium, 2013, 34(5): 58-62. doi: 10.7513/j.issn.1004-7638.2013.05.012
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  50
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-12
  • 刊出日期:  2022-09-14

目录

    /

    返回文章
    返回