Effect of Al content on fracture behavior of γ-TiAl alloy
-
摘要: 利用分子动力学研究了300 K温度下,Al含量在45%~49%范围内时,单晶γ-TiAl合金单轴拉伸的裂纹扩展机理和力学性能变化。分析了Al含量为45%的γ-TiAl合金拉伸过程中裂纹演变过程和Al含量在45%~49%时γ-TiAl合金的应力-应变曲线、总能量随时间变化曲线。研究表明:Al含量会影响材料的性能,Al含量为45%的γ-TiAl合金拉伸过程中产生的Lomer-Cottrell位错对裂纹的扩展行为也有很大影响。由于堆垛层错,位错和孔洞的产生及位错反应和运动,以及Al含量降低导致材料的屈服强度增加。Al含量在45%~49%范围内的γ-TiAl合金随Al含量减少,材料的屈服应力和弹性模量增大。Abstract: The crack growth mechanism and mechanical properties of single crystal γ-TiAl alloy with 45%~49% Al under uniaxial tension at 300 K had been investigated be means of molecular dynamics. The crack development of γ-TiAl alloy with 45% Al content during tensile process and the stress-strain curve and the total energy variation curve with time for γ-TiAl alloy with 45%~49% Al content were analyzed.The results show that Al content affects the properties of the γ-TiAl alloy, and the Lomer Cottrell dislocation produced during the tensile process of γ-TiAl alloy containing 45% Al content has a great influence on the mechanism of crack propagation. Stacking fault, dislocation and holegeneration,dislocation reaction and movement, and decreasing Al content can all contribute to the increasing yield strength of γ-TiAl alloy. The yield stress and elastic modulus of γ-TiAl alloy increase with the decrease of Al content in the range of 45%~49%.
-
Key words:
- γ-TiAl alloy /
- fracture behavior /
- Al content /
- molecular dynamics /
- single crystal /
- stress-strain /
- the total energy
-
表 1 不同Al含量的γ-TiAl合金微观缺陷演变时间
Table 1. Evolution time of microdefects in γ-TiAl alloys with different Al contents
合金
成分第一个位错形核时间/ps 发生变形时间/ps 断裂时间/ps 屈服应力/GPa Ti45Al 205 206.5 220.5 12.24 Ti46Al 203 207.3 215 12.06 Ti47Al 197 200.3 212 11.75 Ti48Al 179.9 195 207 11.57 Ti49Al 177.2 178 206 11.22 -
[1] Rui Zhiyuan, Zhang Guotao, Feng Ruicheng, et al. Study on microslip mechanism of single crystal γ-tial alloy[J]. Journal of Functional Materials, 2015,46(1):1103−1107. (芮执元, 张国涛, 冯瑞成, 等. 单晶γ-TiAl合金微观滑移机制的研究[J]. 功能材料, 2015,46(1):1103−1107. doi: 10.3969/j.issn.1001-9731.2015.01.021 [2] Kastenhuber M, Rashkova B, Clemens H, et al. Effect of microstructural instability on the c-reep resistance of an advanced intermetallic γ-TiAl based alloy[J]. Intermetallics, 2017,80:1−9. doi: 10.1016/j.intermet.2016.09.007 [3] Cao Dengqing, Bai Kunchao, Ding Hu, et al. Research progress on dynamics and vibration control of large flexible spacecraft[J]. Journal of Mechanics, 2019,51(1):1−13. (曹登庆, 白坤朝, 丁虎, 等. 大型柔性航天器动力学与振动控制研究进展[J]. 力学学报, 2019,51(1):1−13. doi: 10.6052/0459-1879-18-054 [4] Feng R C, Rui Z Y, Zhang G T, et al. Improved method of fatigue life assessment for TiAl alloys[J]. Strength of Materials, 2014,46(2):183−189. doi: 10.1007/s11223-014-9534-x [5] Sabine, Decker, Janny, et al. Synthesis and mechani-cal properties of TiAl particle reinforced Ti-6Al-4V[J]. Materials Science & Engineering A, 2016,674:361−365. [6] Rodney R, Boyer M S. New titanium applications on the Boeing 777 airplane[J]. JOM Journal of the Minerals, Metals and Materials Society, 1992,44(5):23−25. doi: 10.1007/BF03223045 [7] Clemens H, Mayer S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys[J]. Advanced Engineering Materials, 2013,15(4):191−215. doi: 10.1002/adem.201200231 [8] Tetsui T. Manufacturing technology for gamma-TiAl alloy in current and future applications[J]. Rare Metals, 2011, 30(Supplement 1): 294-299. [9] 陈玉勇, 苏勇君, 孔凡涛. TiAl金属间化合物制备技术的研究进展[C]// 中国有色金属工业协会钛锆铪分会2013年会论文集. 北京: 中国有色金属工业协会, 2013.Chen Yuyong, Su Yongjun, Kong Fantao. Progress in preparation of TiAl intermetallic compounds[C]// Proceedings of the 2013 Annual Conference of Titanium, Zirconium and Hafnium Branch of China Non-ferrous Metals Industry Association. Beijing: China Non-ferrous Metals Industry Association, 2013. [10] Jia Hong, Lu Fusheng, Hao Bin. China titanium industry development report 2019[J]. Iron Steel Vanadium Titanium, 2020,41(3):1−7. (贾翃, 逯福生, 郝斌. 2019年中国钛工业发展报告[J]. 钢铁钒钛, 2020,41(3):1−7. doi: 10.7513/j.issn.1004-7638.2020.04.001 [11] Qian Jiuhong, Qi Xuezhong. Research and application of TiAl(γ) based titanium alloy[J]. Rare Metals, 2002,4(6):477−482. (钱九红, 祁学忠. TiAl(γ)基钛合金的研究与应用[J]. 稀有金属, 2002,4(6):477−482. doi: 10.3969/j.issn.0258-7076.2002.06.015 [12] Fang Zhou, Liu Xiaobo, Xu Qingjun. Molecular dynamics simulation of aluminum multi-hole evolution behavior[J]. Machinery Design & Manufacture, 2018,(1):32−35. (方洲, 刘晓波, 徐庆军. 铝多孔洞演变行为的分子动力模拟[J]. 机械设计与制造, 2018,(1):32−35. doi: 10.3969/j.issn.1001-3997.2018.01.010 [13] Feng Ruicheng, Cao Hui, Li Haiyan, et al. Effects of vacancy concentration and temperature on mechanical properties of single-crystal γ-TiAl based on molecular dynamics simulation[J]. High Temperature Materials and Processes, 2018,37(2):113−220. doi: 10.1515/htmp-2016-0156 [14] Takeuchi S, Kawamura T, Suzuki Y, et al. Molecul-ardynamics simulation of dislocation behavior in TiAl intermetallic compound[J]. Journal of the Japan Institute of Metals, 2015,79(8):413−418. [15] Zhang Ling, Luo DEchun, Bai Xiangxia, et al. Atomic simulation of fatigue crack propagation mechanism of single crystal γ-TiAl alloy[J]. Journal of Aviation Materials, 2018,38(1):88−94. (张玲, 罗德春, 白湘霞, 等. 单晶γ-TiAl合金疲劳裂纹扩展机制的原子模拟[J]. 航空材料学报, 2018,38(1):88−94. doi: 10.11868/j.issn.1005-5053.2017.000025 [16] Guo Linkai, Wang Lei. Effect of temperature on deformation of nanoporous copper under high strain rate compression[J]. Computer Simulation, 2017,34(12):237−240, 278. (郭林凯, 王磊. 高应变率压缩下温度对纳米多孔铜变形的影响[J]. 计算机仿真, 2017,34(12):237−240, 278. doi: 10.3969/j.issn.1006-9348.2017.12.052 [17] Zope R R, Mishin Y. Interatomic potentials for atomistic simulations of the Ti-Al system[J]. Physical Review B, 2003,68(2):366−369. [18] Abbott L J, Hart K E, Colina C M. Polymatic: a generalized simulated polymerization algorithm for amorphous polymers[J]. Theoretical Chemistry Accounts, 2013,132(3):1−19. [19] Hirel P. Atomsk: A tool for manipulating and converting atomic data files[J]. Computer Physics Communications, 2015:212−219. [20] Karnthaler H P. The study of glide on {001} planes in fcc metals deformed at room temperature[J]. Philosophical Magazine A, 1978,38(2):141−156. doi: 10.1080/01418617808239225 [21] Stukowski, Alexander. Visualization and analysis of atomistic simulation data with OVITO the open visualization tool[J]. Modelling Simul. Mater. Sci. Eng., 2010,18(1):2154−2162. [22] Umeda H, Kishida K, Inui H, et al. Effects of Al-concentration and lamellar spacing on the room-temperature strength and ductility of PST crystals of TiAl[J]. Materials Science & Engineering A, 1997,239-240:336−343. [23] Zhang W J, Appel F. Effect of Al content and Nb addition on the strength and fault energy of TiAl alloys[J]. Materials Science & Engineering A, 2002,329(none):649−652. [24] Huang Yuanchun, Shao Hongbang, Xiao Zhengbing, et al. First-principles study of AlB2, TiB2 and TiAl3 in Al-Ti-B alloys[J]. China Journal of Nonferrous Metals, 2018,28(8):1491−1498. (黄元春, 邵虹榜, 肖政兵, 等. Al-Ti-B合金中AlB2、TiB2和TiAl3的第一性原理研究[J]. 中国有色金属学报, 2018,28(8):1491−1498. [25] Xing Shengdi. Electronic theory of anomalous mechanical properties of TiAl compounds[J]. Scientific Bulletin, 1991,36(5):72−75. (邢胜娣. TiAl化合物反常力学性能的电子理论[J]. 科学通报, 1991,36(5):72−75.