Research status and prospect of high-strength β-titanium alloy
-
摘要: 对于钛合金来说,合金元素的种类以及含量对合金性能有很大的影响。而对于β钛合金,主要问题是如何选择β稳定元素以及控制β稳定元素的添加量。综述了不同合金元素对β钛合金的影响,并总结了国内外高强β钛合金的发展过程及现状。重点介绍了美国的Ti-1023、β21-S和俄罗斯的BT22、Ti-5553以及中国的Ti-5523合金。此外,从添加小尺寸间隙元素来控制合金相的大小、形态及种类的角度,对提升β钛合金强度进行了展望,以期使β钛合金的强度进一步提高。最后总结了β钛合金发展过程中遇到的困难及β钛合金可能的发展方向。Abstract: For titanium alloys, the type and content of alloying elements have a great impact on the properties of the alloy. For β-titanium alloy, the main problem is how to select β-stable elements and control the addition of β-stable elements. In this paper, the influence of different alloyed elements on β-titanium alloy is reviewed, and the development process and current situation of high-strength β-titanium alloy at home and abroad are summarized. The American Ti-1023, β21-S, Russian BT22, Ti-5553 and Chinese Ti-5523 are mainly introduced. In addition, from the perspective of controlling the size, shape and type of the alloy phase by adding small size gap elements, the improvement of the strength of β-titanium alloy is prospected, in order to further improve the strength of β-titanium alloy. Finally, the difficulties encountered in the development of β-titanium alloy and the possible development direction of β-titanium alloy are summarized.
-
Key words:
- β titanium alloy /
- microalloying /
- β-stable elements /
- interstitial element /
- mechanical property
-
图 1 β稳定元素的分类[13]
Figure 1. Classification of β-stablilizers elements
图 2 几种常见β钛合金的钼当量[7]
Figure 2. Mo equivalents of several common β-titanium alloys
图 3 (a)Ti-24Nb; (b)Ti-24Nb-0.5N的XRD谱[58]
Figure 3. XRD patterns of (a) Ti-24Nb and (b) Ti-24Nb-0.5N
图 4 固溶处理的 (a)Ti-24Nb; (b)Ti-24Nb-0.5N的光学显微照片[59]
Figure 4. Optical micrographs of the solution-treated Ti–24Nb (a) and Ti–24Nb–0.5N (b) alloys
表 1 国内外研究的部分高强β钛合金[26]
Table 1. Some β-titanium alloys developed by China and foreign countries
类别 商用名称 成分 研制国家 钼当量 应用 Ti-16-2 Ti-16V-2.5Al 美国 8.4 高强、中温 BT22 Ti-5A1-5Mo-5V-1Cr-1Fe 前苏联 8.0 高强锻件 近β钛合金 BT30 Ti-11V-4Zr-6Sn 前苏联 7.4 发动机 SP-700 Ti-5A1-3V-2Mo-2Fe 日本 5.3 超塑成形 TC6 Ti-3A1-6V-5Mo-11Cr 前苏联 21.6 弹性元件 BT15 Ti-3A1-7V-11Cr 前苏联 21.6 弹性元件 Ti-1-8-5 Ti-1A1-8V-5Fe 美国 19 紧固件 TB2 Ti-5Mo-5V-8Cr-3Al 中国 18.2 紧固件 TMZF Ti-12Mo-6Zr-2Fe 美国 18 矫形植入件 亚稳β钛合金 β-C Ti-3A1-8V-6Cr-4Mo-4Zr 美国 16 结构件 IMI-205 Ti-15Mo 英国 15 耐蚀合金 Ti-8-8-2-3 Ti-8V-8Mo-2Fe-3Al 美国 15 高强锻件 BT3 Ti-10Mo-8V-1Fe-3.5Al 中国 13.9 紧固件 BT4 Ti-4Al-7Mo-10V-2Fe-1Zr 中国 13.7 紧固件 Ti-15-3 Ti-15V-3Cr-3Sn-3Al 美国 12 板材、骨架 Alloy C Ti-35V-15Cr 美国 47 阻燃合金 稳定β钛合金 Ti-40Mo 美国 40 阻燃合金 Ti40 Ti-25V-15Cr-0.2Si 中国 40 阻燃合金 表 2 不同热处理条件下β-21S合金的力学性能[32]
Table 2. Mechanical properties of β-21S alloy under different heat treatment conditions
时效制度 性能 温度/ ℃ 时间/h 加热速率/ (K·s−1) σb/MPa σ0.2/MPa δ/% Ψ/% 500 8 0.25 1 400 1 340 4.8 25 520 8 0.25 1 489 1 435 8.5 39 520 8 0.03 1 560 1 547 3.8 27 520 16 0.25 1 533 1 481 10.0 48 538 8 0.25 1 388 1 334 11.2 46 工艺C 工艺C 0.25 1 620 1 570 9.8 38 注:工艺C指300 ℃,8 h+500 ℃,8 h时效。 表 3 BT22时效处理后的力学性能[36]
Table 3. Mechanical properties of BT22 after aging treatment
时效制度 σb/MPa σ0.2/MPa δ/% Ψ/% 温度/ ℃ 时间/h 650 0 1009 ±131103 ±305.8 26±4 650 1 1120 ±151194 ±2410.1 44±5 650 2 1165 ±191243 ±268.5 51±6 650 4 1219 ±221278 ±297.1 56±6 650 8 1247 ±181298 ±166.8 62±4 表 4 美国和俄罗斯主要高强β钛合金的力学性能[7]
Table 4. Mechanical properties of some high-strength β-titanium alloys from USA and Russia
合金牌号 合金成分 热处理工艺 σ/MPa [Mo]eq BT22M Ti-5Al-5Mo-1V-1Cr-1Fe-1.5Sn-2Zr 退火 1 200 9.4 βCEZ Ti-5Al-4Mo-2Cr-1.2Fe-2Sn-4Zr 淬火+时效 1 506 9.7 Ti-17 Ti-5A1-2Sn-4Mo-4Cr-2Zr 退火 1 160 10.7 Ti-5A1-2Sn-4Mo-4Cr-2Zr 淬火+时效 1 300 βⅢ Ti-11.5Mo-6Zr-4.5Sn 淬火+时效 1 413 11.5 Ti- 1023 Ti-10V-2Fe-3Al 淬火+时效 1 275 11.1 Ti- 55531 Ti-5A1-5V-5Mo-3Cr-1Zr 淬火+时效 1 370 13.1 Ti-2041 Ti-4A1-20V-1Sn 淬火+时效 1 530 14.3 Ti-15-3 Ti-15V-3Al-3Cr-3Sn 淬火+时效 1 475 15.7 BT35 Ti-15V-3Cr-3A1-3Sn-1Zr-1Mo 淬火+时效 1 275 16.7 表 5 中国部分高强β钛合金的力学性能
Table 5. Mechanical properties of some high-strength β-titanium alloys in China
合金牌号 合金成分 热处理工艺 σ/MPa 应用 TB15 Ti-4A1-5Mo-5V-6Cr 固溶+时效 1 350 高强度组件 Ti- 7333 Ti-7Mo-3Al-3Cr-3Nb 固溶+时效 1 350 高强度组件 M28 Ti-4A1-5V-5Mo-6Cr-1Nb 固溶+时效 1 350 高强度组件 TB17 Ti-4.5Al-6.5Mo-2Cr-2.6Nb-2Zr-1Sn 固溶+时效 1 350 高强度组件 TB19 Ti-3A1-5Mo-5V-4Cr-2Zr 固溶+时效 1 200 高强度耐腐蚀件 TB20 Ti-3.5A1-5Mo-4V-2Cr-2Zr-2Sn-1Fe 固溶+时效 1 300 高强度组件 -
[1] Li Yi, Zhao Yongqing, Zeng Weidong. Application and development of aerial titanium alloys[J]. Materials Reports, 2020,34(S1):280−282. (李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020,34(S1):280−282.Li Yi , Zhao Yongqing , Zeng Weidong . Application and development of aerial titanium alloys[J]. Materials Reports, 2020, 34(S1): 280-282. [2] Rrka B, Rkg C, As B, et al. Vacuum diffusion bonding of α titanium alloy to stainless steel for aerospace applications: Interfacial microstructure and mechanical characteristics[J]. Materials Characterization, 2021,183:111607. [3] Nabhani F. Machining of aerospace titanium alloys[J]. Robotics & Computer Integrated Manufacturing, 2001,17(1-2):99−106. [4] Li L C, Mi X J, Ye W J, et al. A study on the microstructures and tensile properties of new beta high strength titanium alloy[J]. Journal of Alloys and Compounds, 2013,550:23−30. doi: 10.1016/j.jallcom.2012.09.140 [5] Ivasishin O M, Markovsky P E, Matviychuk Y V, et al. A comparative study of the mechanical properties of high-strength β-titanium alloys[J]. Journal of Alloys & Compounds, 2008,457(1-2):296−309. [6] Ivasishin O M, Markovsky R, Semiatin S L, et al. Aging response of coarse- and fine-grained β titanium alloys[J]. Materials Science & Engineering A, 2005,405(1/2):296−305. [7] Wang Dingchun. Development and application of high-strength titanium alloys[J]. The Chinese Journal of Nonferrous Metals, 2010,20(S1):958−963. (王鼎春. 高强钛合金的发展与应用[J]. 中国有色金属学报, 2010,20(S1):958−963. doi: 10.19476/j.ysxb.1004.0609.2010.s1.206Wang Dingchun. Development and application of high-strength titanium alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(S1): 958-963. doi: 10.19476/j.ysxb.1004.0609.2010.s1.206 [8] Pallavi Pushp, Dasharath S M, Arati C. Classification and applications of titanium and its alloys - ScienceDirect[J]. Materials Today:Proceedings, 2022,54(2):537−542. [9] Zhang Pingping, Wang Qingjuan, Gao Qi, et al. Research and application of high-strength β Ti alloy[J]. Hot Working Technology, 2012,41(14):51−55. (张平平, 王庆娟, 高颀, 等. 高强β钛合金研究和应用现状[J]. 热加工工艺, 2012,41(14):51−55. doi: 10.3969/j.issn.1001-3814.2012.14.014Zhang Pingping , Wang Qingjuan , Gao Qin , et al. Research and application of high-strength β Ti alloy[J]. Hot Working Technology, 2012, 41(14): 51-55. doi: 10.3969/j.issn.1001-3814.2012.14.014 [10] Dipankar, Banerjee, Williams J C. Perspectives on titanium science and technology[J]. Acta Materialia, 2013,61:844−879. doi: 10.1016/j.actamat.2012.10.043 [11] Bania P J. Beta titanium alloys and their role in the titanium industry[J]. Journal of the Minerals, Metals & Materials Society, 1994, 46: 16-19. [12] Min X, Emura S, Ling Z, et al. Improvement of strength–ductility tradeoff in β titanium alloy through pre-strain induced twins combined with brittle ω phase[J]. Materials Science & Engineering A, 2015,646(14):279−287. [13] 闫平. BT22高强度铸造钛合金组织与性能的研究[D]. 北京: 机械科学研究总院, 2007.Yan Ping . Study on microstructures and mechanical properties of high-strength BT22 cast titanium alloy[D]. Beijing: China Academy of Machinery Science and Technology Group, 2007. [14] Dipankar Banerjee, Williams J C. Perspectives on titanium science and technology[J]. Acta Materialia, 2013,61(3): 844-879. [15] 张翥, 王群骄, 莫畏. 钛的金属学和热处理[M]. 北京: 冶金工业出版社, 2009.Zhang Zhu, Wang Qunjiao, Mo Wei. Metallogy and heat treatmen of titanium[M]. Beijing: Metallurgical Industry Press, 2009. [16] 赵永庆. 钛合金相变及热处理[M]. 长沙: 中南大学出版社, 2012.Zhao Yongqing. Phase transformation and heat treatment of titanium alloys[M]. Changsha: Central South University Press, 2012 . [17] Boyer R R. An overview on the use of titanium in the aerospace industry[J]. Materials Science and Engineering A, 1996,213(1-2):103−114. doi: 10.1016/0921-5093(96)10233-1 [18] Fujishiro S , Eylon D , Kishi T . Metallurgy and technology of practical titanium alloys[M]. USA: TMS, 1994. [19] Wen Jianhong, Yang Guanjun, Ge Peng,et al. The research progress of β titanium alloys[J]. Titanium Industry Progress, 2008,(1):33−39. (汶建宏, 杨冠军, 葛鹏, 等. β钛合金的研究进展[J]. 钛工业进展, 2008,(1):33−39. doi: 10.3969/j.issn.1009-9964.2008.01.008Wen Jianhong , Yang Guanjun , Ge Peng . The research progress of β titanium alloys[J]. Titanium Industry Progress, 2008(1): 33-39. doi: 10.3969/j.issn.1009-9964.2008.01.008 [20] Weiss I, Semiatin S L. Thermomechanical processing of beta titanium alloys—an overview[J]. Materials Science & Engineering A, 1998,243(1-2):46−65. [21] Wang Guangrong, Gao Qi, Liu Jixiong, et al. Composition design of beta-titanium alloys: Theoretical, methodological and practical advances[J]. Materials Reports, 2017,31(3):44−51. (王光荣, 高颀, 刘继雄, 等. β钛合金成分设计: 理论、方法、实践[J]. 材料导报, 2017,31(3):44−51.Wang Guangrong , Gao Qin , Liu Jiwei , et al. Composition design of beta-titanium alloys: Theoretical, methodological and practical advances[J]. Materials Reports, 2017, 31(3): 44-51. [22] 杜赵新. 新型高强β钛合金的热处理和微合金化以及高温变形行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.Du Zhaoxin . Heat treatment and microalloying and high temperature deformation behavior of new high strength titanium alloy[D]. Harbin: Harbin Institute of Technology, 2014. [23] Cui Y J, Aoyagi K, Koizumi Y, et al. Effect of niobium addition on tensile properties and oxidation resistance of a titanium-based alloy[J]. Corrosion Science, 2020,180:109198. [24] Wu Huan, Zhao Yongqing, Ge Peng, et al. Effect of β stabilizing elements on the strengthening behavior of titanium a phase[J]. Rare Metal Materials and Engineering, 2012,41(5):805−810. (吴欢, 赵永庆, 葛鹏, 等. β稳定元素对钛合金α相强化行为的影响[J]. 稀有金属材料与工程, 2012,41(5):805−810. doi: 10.3969/j.issn.1002-185X.2012.05.012Wu Huan , Zhao Yongqing, Ge Peng , et al. Effect of β stabilizing elements on the strengthening behavior of titanium a phase[J]. Rare Metal Materials and Engineering, 2012, 41(5): 805-810 . doi: 10.3969/j.issn.1002-185X.2012.05.012 [25] Zhao Y, Liu J, Zhou L. Analysis on the segregation of typical β alloying elements of Cu, Fe and Cr in Ti alloys[J]. Rare Metal Materials and Engineering, 2005,34(4):531−538. [26] Wu Xiaodong, Yang Guanjun, Ge Peng, et al. Inductions of β titanium alloy and solid state phase transition[J]. Titanium Industry Progress, 2008,(5):1−6. (吴晓东, 杨冠军, 葛鹏, 等. β钛合金及其固态相变的归纳[J]. 钛工业进展, 2008,(5):1−6. doi: 10.3969/j.issn.1009-9964.2008.05.001Wu Xiaodong, Yang Guanjun , Ge Peng, et al. Inductions of β titanium alloy and solid state phase transition[J]. Titanium Industry Progress, 2008(5): 1-6 . doi: 10.3969/j.issn.1009-9964.2008.05.001 [27] Boyer, Rodney R. Design properties of a high-strength titanium alloy Ti-10V-2Fe-3Al[J]. JOM, 1980,32(3):61−65. doi: 10.1007/BF03354557 [28] Qian Jiuhong. Application and development of new titanium alloys for aerospace[J]. Chinese Journal of Rare Metals, 2000,(3):218−223. (钱九红. 航空航天用新型钛合金的研究发展及应用[J]. 稀有金属, 2000,(3):218−223. doi: 10.3969/j.issn.0258-7076.2000.03.012Qian Jiuhong. Application and development of new titanium alloys for aerospace[J]. Chinese Journal of Rare Metals, 2000(3): 218-223. doi: 10.3969/j.issn.0258-7076.2000.03.012 [29] Chen C C, Boyer R R. Practical considerations for manufacturing high-strength Ti-10V-2Fe-3A1 alloy forgings[J]. JOM, 1979,31(7):33−39. doi: 10.1007/BF03354533 [30] Gerhard W, Boyer R R, Collings E W. Materials properties handbook: Titanium alloys[M]. USA: Materials Park, OH : ASM International, 1994. [31] Zhao Q Y, Sun Q Y, Xin S W, et al. High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process[J]. Materials Science and Engineering:A, 2022,845:143260. doi: 10.1016/j.msea.2022.143260 [32] Sansoz F, Almesallmy M, Ghonem H. Ductility exhaustion mechanisms in thermally exposed thin sheets of a near-β titanium alloy[J]. Metallurgical & Materials Transactions A, 2004,35(10):3113−3127. [33] Boyer R R. Aerospace applications of beta titanium alloys[J]. JOM, 1994,46(7):20−23. doi: 10.1007/BF03220743 [34] Qiu D, Zhang M, Kelly P, et al. Discovery of plate-shaped athermal ω phase forming pairs with α′ martensite in a Ti–5.26%Cr alloy[J]. Scripta Materialia, 2013,69(10):752−755. doi: 10.1016/j.scriptamat.2013.08.020 [35] Zhao Hongxia, Yu Wenjun. Development and application of high strength titanium alloy BT22 in aviation industry[J]. Aeronautical Manufacturing Technology, 2010,(1):85−86, 90. (赵红霞, 虞文军. 航空用高强度BT22钛合金的研发和应用[J]. 航空制造技术, 2010,(1):85−86, 90. doi: 10.3969/j.issn.1671-833X.2010.01.017Zhao H X , Yu W J . Development and application of high strength titanium alloy BT22 in aviation industry[J]. Aeronautical Manufacturing Technology, 2010(1): 85-86, 90. doi: 10.3969/j.issn.1671-833X.2010.01.017 [36] Jones N G, Dashwood R J, Dye D, et al. The flow behavior and microstructural evolution of Ti-5Al-5Mo-5V-3Cr during subtransus isothermal forging[J]. Metallurgical and Materials Transactions A, 2009,40(8):1944−1954. doi: 10.1007/s11661-009-9866-5 [37] 李秀广. 热处理对高强β钛合金板材组织及性能影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.Li Xiuguang. Effect of heat treatment on microstructure and mechanical properties of high strength β titanium alloy sheets[D]. Harbin: Harbin Institute of Technology, 2016 . [38] 陈兆琦. 高强β钛合金高温变形行为及板材组织性能的研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.Chen Zhaoqi. High temperature deformation behavior and sheet microstructure and properties of high strength β titanium alloy[D]. Harbin: Harbin Institute of Technology, 2021. [39] Shekhar S, Sarkar R, Kar S K, et al. Effect of solution treatment and aging on microstructure and tensile properties of high strength β titanium alloy Ti–5Al–5V–5Mo–3Cr[J]. Materials and Design, 2015,66:596−610. doi: 10.1016/j.matdes.2014.04.015 [40] None. The use of β titanium alloys in the aerospace industry[J]. Journal of Materials Engineering & Performance, 2013,22(10):2916−2920. [41] Cotton J D, Briggs R D, Boyer R R, et al. State of the art in beta titanium alloys for airframe applications[J]. JOM, 2015,67(6):1281−1303. doi: 10.1007/s11837-015-1442-4 [42] 杨建辉. 锻态β钛合金组织性能及热变形行为的研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.Yang Jianhui. Research on microstructure and microstructure properties and hot deformation behavior of wrought as-forged beta titanium alloy[D]. Harbin: Harbin Institute of Technology, 2016. [43] Yang Dongyu, Fu Yanyan, Hui Songxiao, et al. Research and application of high strength and high toughness titanium alloys[J]. Chinese Journal of Rare Metals, 2011,35(4):575−580. (杨冬雨, 付艳艳, 惠松骁, 等. 高强高韧钛合金研究与应用进展[J]. 稀有金属, 2011,35(4):575−580. doi: 10.3969/j.issn.0258-7076.2011.04.017Yang Dongyu, Fu Yanyan, Hui Songxiao, et al. Research and application of high strength and high toughness titanium alloys[J]. Chinese Journal of Rare Metals, 2011, 35(4): 575-580. doi: 10.3969/j.issn.0258-7076.2011.04.017 [44] Liu Rui , Hui Songxiao , Ye Wenjun , et al. Effects of heat-treatment on dynamic fracture toughness of TB10 titanium alloy[J]. Chinese Journal of Rare Metals, 2010,34(4):485−490. (刘睿, 惠松骁, 叶文君, 等. 热处理工艺对TB10钛合金动态断裂韧性的影响[J]. 稀有金属, 2010,34(4):485−490. doi: 10.3969/j.issn.0258-7076.2010.04.003Liu Rui , Hui Songxiao , Ye Wenjun , et al. Effects of heat-treatment on dynamic fracture toughness of TB10 titanium alloy[J]. Chinese Journal of Rare Metals, 2010,34(4): 485-490. doi: 10.3969/j.issn.0258-7076.2010.04.003 [45] Zhao Xiaolong, Wang Xiaoxiang, Wang Xin. Effect of deformation and heat treatment on micro-structures and mechanical properties of cold rolled BTi-6554 alloy sheets[J]. Southern Metals, 2015,(5):5−7. (赵小龙, 王小翔, 王新. 变型量和热处理对BTi-6554钛合金冷轧板材组织和性能的影响[J]. 南方金属, 2015,(5):5−7. doi: 10.3969/j.issn.1009-9700.2015.05.002Zhao X L , Wang X X, Wang X . Effect of deformation and heat treatment on micro-structures and mechanical properties of cold rolled BTi-6554 alloy sheets[J]. Southern Metals, 2015(5): 5-7 . doi: 10.3969/j.issn.1009-9700.2015.05.002 [46] Conrad Hans. Effect of interstitial solutes on the strength and ductility of titanium[J]. Progress in Materials Science, 1981, 26(2-4):123-403. [47] Xin Ji, Satoshi Emura, Liu Tianwei, et al. Effect of oxygen addition on microstructures and mechanical properties of Ti-7.5Mo alloy[J]. Journal of Alloys & Compounds, 2018,737:221−229. [48] Min X H, Emura S, Tsuchiya K, et al. Transition of multi-deformation modes in Ti–10Mo alloy with oxygen addition[J]. Materials Science and Engineering A, 2014,590:88−96. doi: 10.1016/j.msea.2013.10.010 [49] Min X, Bai P, Emura S, et al. Effect of oxygen content on deformation mode and corrosion behavior in β-type Ti-Mo alloy[J]. Materials Science & Engineering A, 2016,684:534−541. [50] Lan Chunbo, Chen Feng , Chen Huijuan, et al. Influence of oxygen content on the microstructure and mechanical properties of cold rolled Ti-32.5Nb-6.8Zr-2.7Sn-xO alloys after aging treatment[J]. Journal of Materials Science & Technology, 2018,34(11):134−140. [51] Furuta T, Kuramoto S, Hwang J, et al. Mechanical properties and phase stability of Ti-Nb-Ta-Zr-O alloys[J]. Materials Transactions, 2007,48(5):1124−1130. doi: 10.2320/matertrans.48.1124 [52] Duan H P, Xu H X, Su W H, et al. Effect of oxygen on the microstructure and mechanical properties of Ti-23Nb-0.7Ta-2Zr alloy[J]. International Journal of Minerals Metallurgy & Materials, 2012,19(12):6. [53] Niinomi Mitsuo,Nakai Masaaki, Hendrickson , et al. Influence of oxygen on omega phase stability in the Ti-29Nb-13Ta-4.6Zr alloy[J]. Scripta Materialia, 2016,123:144−148. doi: 10.1016/j.scriptamat.2016.06.027 [54] Pinotti V E, Plaine A H, Silva M, et al. Influence of oxygen addition and aging on the microstructure and mechanical properties of a β-Ti-29Nb–13Ta–4Mo alloy[J]. Materials Science and Engineering A, 2021,819(18):141500. [55] Chen X, Chen S, Jiang Y, et al. Minocycline reduces oxygen–glucose deprivation-induced PC12 cell cytotoxicity via matrix metalloproteinase-9, integrin β1 and phosphorylated Akt modulation[J]. Neurological Sciences, 2013,34(8):1391−1396. doi: 10.1007/s10072-012-1246-z [56] Hennig R G , Trinkle D R , Bouchet J , et al. Impurities block the α to ω martensitic transformation in titanium[J]. Nature Materials, 2005,4:129-133. [57] Furuhara T, Annaka S, Tomio Y, et al. Superelasticity in Ti–10V–2Fe–3Al alloys with nitrogen addition[J]. Materials Science & Engineering A, 2006,438:825−829. [58] Ramarolahy A, Philippe Castany, Frédéric Prima, et al. Microstructure and mechanical behavior of superelastic Ti–24Nb–0.5O and Ti–24Nb–0.5N biomedical alloys[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012,9(9):83−90. [59] Xiu S, Lei W, Niinomi M, et al. Microstructure and fatigue behaviors of a biomedical Ti–Nb–Ta–Zr alloy with trace CeO2 additions[J]. Materials Science and Engineering A, 2014,619:112−118. doi: 10.1016/j.msea.2014.09.069 [60] Blenkinsop P A, Jones I P. Effects of boron, carbon, and silicon additions on microstructure and properties of a Ti–15Mo based beta titanium alloy[J]. Materials Science & Technology, 2001,17(5):573−580. [61] Banoth R, Sarkar R, Bhattacharjee A, et al. Effect of boron and carbon addition on microstructure and mechanical properties of metastable beta titanium alloys[J]. Materials & Design, 2015,67:50−63. [62] Gao K W, Nakamura M. Microstructures and hydrogen embrittlement of Ti–49Al alloy[J]. Intermetallics, 2000,8(5):595−597. [63] Briant C L, Wang Z F, Chollocoop N. Hydrogen embrittlement of commercial purity titanium[J]. Corrosion Science, 2002,44(8):1875−1888. [64] Alvarez A M, Robertson I M, Birnbaum H K. Hydrogen embrittlement of a metastable β-titanium alloy[J]. Acta Materialia, 2004,52(14):4161−4175. doi: 10.1016/j.actamat.2004.05.030 -