中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高强β钛合金的研究现状与展望

王安东 相志磊 周宗熠 马小昭 韩竟俞 陈子勇

王安东, 相志磊, 周宗熠, 马小昭, 韩竟俞, 陈子勇. 高强β钛合金的研究现状与展望[J]. 钢铁钒钛, 2023, 44(6): 46-57. doi: 10.7513/j.issn.1004-7638.2023.06.007
引用本文: 王安东, 相志磊, 周宗熠, 马小昭, 韩竟俞, 陈子勇. 高强β钛合金的研究现状与展望[J]. 钢铁钒钛, 2023, 44(6): 46-57. doi: 10.7513/j.issn.1004-7638.2023.06.007
Wang Andong, Xiang Zhilei, Zhou Zongyi, Ma Xiaozhao, Han Jingyu, Chen Ziyong. Research status and prospect of high-strength β-titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 46-57. doi: 10.7513/j.issn.1004-7638.2023.06.007
Citation: Wang Andong, Xiang Zhilei, Zhou Zongyi, Ma Xiaozhao, Han Jingyu, Chen Ziyong. Research status and prospect of high-strength β-titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 46-57. doi: 10.7513/j.issn.1004-7638.2023.06.007

高强β钛合金的研究现状与展望

doi: 10.7513/j.issn.1004-7638.2023.06.007
基金项目: 国家自然科学基金项目(51871006)。
详细信息
    作者简介:

    王安东,1999年出生,男,山东聊城人,硕士研究生,研究方向:高强钛合金制备及加工工艺,E-mail:wang1807938507@163.com

    通讯作者:

    陈子勇,1966年出生,男,黑龙江人,博士,教授,研究方向:轻质耐高温难变形结构材料,超高强韧铝合金及其复合材料制备,E-mail:czy@bjut.edu.cn

  • 中图分类号: TF823,TG146.23

Research status and prospect of high-strength β-titanium alloy

  • 摘要: 对于钛合金来说,合金元素的种类以及含量对合金性能有很大的影响。而对于β钛合金,主要问题是如何选择β稳定元素以及控制β稳定元素的添加量。综述了不同合金元素对β钛合金的影响,并总结了国内外高强β钛合金的发展过程及现状。重点介绍了美国的Ti-1023、β21-S和俄罗斯的BT22、Ti-5553以及中国的Ti-5523合金。此外,从添加小尺寸间隙元素来控制合金相的大小、形态及种类的角度,对提升β钛合金强度进行了展望,以期使β钛合金的强度进一步提高。最后总结了β钛合金发展过程中遇到的困难及β钛合金可能的发展方向。
  • 图  1  β稳定元素的分类[13]

    Figure  1.  Classification of β-stablilizers elements

    图  2  几种常见β钛合金的钼当量[7]

    Figure  2.  Mo equivalents of several common β-titanium alloys

    图  3  (a)Ti-24Nb; (b)Ti-24Nb-0.5N的XRD谱[58]

    Figure  3.  XRD patterns of (a) Ti-24Nb and (b) Ti-24Nb-0.5N

    图  4  固溶处理的 (a)Ti-24Nb; (b)Ti-24Nb-0.5N的光学显微照片[59]

    Figure  4.  Optical micrographs of the solution-treated Ti–24Nb (a) and Ti–24Nb–0.5N (b) alloys

    表  1  国内外研究的部分高强β钛合金[26]

    Table  1.   Some β-titanium alloys developed by China and foreign countries

    类别商用名称成分研制国家钼当量应用
    Ti-16-2Ti-16V-2.5Al美国8.4高强、中温
    BT22Ti-5A1-5Mo-5V-1Cr-1Fe前苏联8.0高强锻件
    近β钛合金BT30Ti-11V-4Zr-6Sn前苏联7.4发动机
    SP-700Ti-5A1-3V-2Mo-2Fe日本5.3超塑成形
    TC6Ti-3A1-6V-5Mo-11Cr前苏联21.6弹性元件
    BT15Ti-3A1-7V-11Cr前苏联21.6弹性元件
    Ti-1-8-5Ti-1A1-8V-5Fe美国19紧固件
    TB2Ti-5Mo-5V-8Cr-3Al中国18.2紧固件
    TMZFTi-12Mo-6Zr-2Fe美国18矫形植入件
    亚稳β钛合金β-CTi-3A1-8V-6Cr-4Mo-4Zr美国16结构件
    IMI-205Ti-15Mo英国15耐蚀合金
    Ti-8-8-2-3Ti-8V-8Mo-2Fe-3Al美国15高强锻件
    BT3Ti-10Mo-8V-1Fe-3.5Al中国13.9紧固件
    BT4Ti-4Al-7Mo-10V-2Fe-1Zr中国13.7紧固件
    Ti-15-3Ti-15V-3Cr-3Sn-3Al美国12板材、骨架
    Alloy CTi-35V-15Cr美国47阻燃合金
    稳定β钛合金Ti-40Mo美国40阻燃合金
    Ti40Ti-25V-15Cr-0.2Si中国40阻燃合金
    下载: 导出CSV

    表  2  不同热处理条件下β-21S合金的力学性能[32]

    Table  2.   Mechanical properties of β-21S alloy under different heat treatment conditions

    时效制度性能
    温度/ ℃时间/h加热速率/ (K·s−1σb/MPaσ0.2/MPa
    δ/%Ψ/%
    50080.251 4001 3404.825
    52080.251 4891 4358.539
    52080.031 5601 5473.827
    520160.251 5331 48110.048
    53880.251 3881 33411.246
    工艺C工艺C0.251 6201 5709.838
    注:工艺C指300 ℃,8 h+500 ℃,8 h时效。
    下载: 导出CSV

    表  3  BT22时效处理后的力学性能[36]

    Table  3.   Mechanical properties of BT22 after aging treatment

    时效制度σb/MPaσ0.2/MPaδ/%Ψ/%
    温度/ ℃时间/h
    65001009±131103±305.826±4
    65011120±151194±2410.144±5
    65021165±191243±268.551±6
    65041219±221278±297.156±6
    65081247±181298±166.862±4
    下载: 导出CSV

    表  4  美国和俄罗斯主要高强β钛合金的力学性能[7]

    Table  4.   Mechanical properties of some high-strength β-titanium alloys from USA and Russia

    合金牌号合金成分热处理工艺σ/MPa[Mo]eq
    BT22MTi-5Al-5Mo-1V-1Cr-1Fe-1.5Sn-2Zr退火1 2009.4
    βCEZTi-5Al-4Mo-2Cr-1.2Fe-2Sn-4Zr淬火+时效1 5069.7
    Ti-17Ti-5A1-2Sn-4Mo-4Cr-2Zr退火1 16010.7
    Ti-5A1-2Sn-4Mo-4Cr-2Zr淬火+时效1 300
    βⅢTi-11.5Mo-6Zr-4.5Sn淬火+时效1 41311.5
    Ti-1023Ti-10V-2Fe-3Al淬火+时效1 27511.1
    Ti-55531Ti-5A1-5V-5Mo-3Cr-1Zr淬火+时效1 37013.1
    Ti-2041Ti-4A1-20V-1Sn淬火+时效1 53014.3
    Ti-15-3Ti-15V-3Al-3Cr-3Sn淬火+时效1 47515.7
    BT35Ti-15V-3Cr-3A1-3Sn-1Zr-1Mo淬火+时效1 27516.7
    下载: 导出CSV

    表  5  中国部分高强β钛合金的力学性能

    Table  5.   Mechanical properties of some high-strength β-titanium alloys in China

    合金牌号合金成分热处理工艺σ/MPa应用
    TB15Ti-4A1-5Mo-5V-6Cr固溶+时效1 350高强度组件
    Ti-7333Ti-7Mo-3Al-3Cr-3Nb固溶+时效1 350高强度组件
    M28Ti-4A1-5V-5Mo-6Cr-1Nb固溶+时效1 350高强度组件
    TB17Ti-4.5Al-6.5Mo-2Cr-2.6Nb-2Zr-1Sn固溶+时效1 350高强度组件
    TB19Ti-3A1-5Mo-5V-4Cr-2Zr固溶+时效1 200高强度耐腐蚀件
    TB20Ti-3.5A1-5Mo-4V-2Cr-2Zr-2Sn-1Fe固溶+时效1 300高强度组件
    下载: 导出CSV
  • [1] Li Yi, Zhao Yongqing, Zeng Weidong. Application and development of aerial titanium alloys[J]. Materials Reports, 2020,34(S1):280−282. (李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020,34(S1):280−282.

    Li Yi , Zhao Yongqing , Zeng Weidong . Application and development of aerial titanium alloys[J]. Materials Reports, 2020, 34(S1): 280-282.
    [2] Rrka B, Rkg C, As B, et al. Vacuum diffusion bonding of α titanium alloy to stainless steel for aerospace applications: Interfacial microstructure and mechanical characteristics[J]. Materials Characterization, 2021,183:111607.
    [3] Nabhani F. Machining of aerospace titanium alloys[J]. Robotics & Computer Integrated Manufacturing, 2001,17(1-2):99−106.
    [4] Li L C, Mi X J, Ye W J, et al. A study on the microstructures and tensile properties of new beta high strength titanium alloy[J]. Journal of Alloys and Compounds, 2013,550:23−30. doi: 10.1016/j.jallcom.2012.09.140
    [5] Ivasishin O M, Markovsky P E, Matviychuk Y V, et al. A comparative study of the mechanical properties of high-strength β-titanium alloys[J]. Journal of Alloys & Compounds, 2008,457(1-2):296−309.
    [6] Ivasishin O M, Markovsky R, Semiatin S L, et al. Aging response of coarse- and fine-grained β titanium alloys[J]. Materials Science & Engineering A, 2005,405(1/2):296−305.
    [7] Wang Dingchun. Development and application of high-strength titanium alloys[J]. The Chinese Journal of Nonferrous Metals, 2010,20(S1):958−963. (王鼎春. 高强钛合金的发展与应用[J]. 中国有色金属学报, 2010,20(S1):958−963. doi: 10.19476/j.ysxb.1004.0609.2010.s1.206

    Wang Dingchun. Development and application of high-strength titanium alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(S1): 958-963. doi: 10.19476/j.ysxb.1004.0609.2010.s1.206
    [8] Pallavi Pushp, Dasharath S M, Arati C. Classification and applications of titanium and its alloys - ScienceDirect[J]. Materials Today:Proceedings, 2022,54(2):537−542.
    [9] Zhang Pingping, Wang Qingjuan, Gao Qi, et al. Research and application of high-strength β Ti alloy[J]. Hot Working Technology, 2012,41(14):51−55. (张平平, 王庆娟, 高颀, 等. 高强β钛合金研究和应用现状[J]. 热加工工艺, 2012,41(14):51−55. doi: 10.3969/j.issn.1001-3814.2012.14.014

    Zhang Pingping , Wang Qingjuan , Gao Qin , et al. Research and application of high-strength β Ti alloy[J]. Hot Working Technology, 2012, 41(14): 51-55. doi: 10.3969/j.issn.1001-3814.2012.14.014
    [10] Dipankar, Banerjee, Williams J C. Perspectives on titanium science and technology[J]. Acta Materialia, 2013,61:844−879. doi: 10.1016/j.actamat.2012.10.043
    [11] Bania P J. Beta titanium alloys and their role in the titanium industry[J]. Journal of the Minerals, Metals & Materials Society, 1994, 46: 16-19.
    [12] Min X, Emura S, Ling Z, et al. Improvement of strength–ductility tradeoff in β titanium alloy through pre-strain induced twins combined with brittle ω phase[J]. Materials Science & Engineering A, 2015,646(14):279−287.
    [13] 闫平. BT22高强度铸造钛合金组织与性能的研究[D]. 北京: 机械科学研究总院, 2007.

    Yan Ping . Study on microstructures and mechanical properties of high-strength BT22 cast titanium alloy[D]. Beijing: China Academy of Machinery Science and Technology Group, 2007.
    [14] Dipankar Banerjee, Williams J C. Perspectives on titanium science and technology[J]. Acta Materialia, 2013,61(3): 844-879.
    [15] 张翥, 王群骄, 莫畏. 钛的金属学和热处理[M]. 北京: 冶金工业出版社, 2009.

    Zhang Zhu, Wang Qunjiao, Mo Wei. Metallogy and heat treatmen of titanium[M]. Beijing: Metallurgical Industry Press, 2009.
    [16] 赵永庆. 钛合金相变及热处理[M]. 长沙: 中南大学出版社, 2012.

    Zhao Yongqing. Phase transformation and heat treatment of titanium alloys[M]. Changsha: Central South University Press, 2012 .
    [17] Boyer R R. An overview on the use of titanium in the aerospace industry[J]. Materials Science and Engineering A, 1996,213(1-2):103−114. doi: 10.1016/0921-5093(96)10233-1
    [18] Fujishiro S , Eylon D , Kishi T . Metallurgy and technology of practical titanium alloys[M]. USA: TMS, 1994.
    [19] Wen Jianhong, Yang Guanjun, Ge Peng,et al. The research progress of β titanium alloys[J]. Titanium Industry Progress, 2008,(1):33−39. (汶建宏, 杨冠军, 葛鹏, 等. β钛合金的研究进展[J]. 钛工业进展, 2008,(1):33−39. doi: 10.3969/j.issn.1009-9964.2008.01.008

    Wen Jianhong , Yang Guanjun , Ge Peng . The research progress of β titanium alloys[J]. Titanium Industry Progress, 2008(1): 33-39. doi: 10.3969/j.issn.1009-9964.2008.01.008
    [20] Weiss I, Semiatin S L. Thermomechanical processing of beta titanium alloys—an overview[J]. Materials Science & Engineering A, 1998,243(1-2):46−65.
    [21] Wang Guangrong, Gao Qi, Liu Jixiong, et al. Composition design of beta-titanium alloys: Theoretical, methodological and practical advances[J]. Materials Reports, 2017,31(3):44−51. (王光荣, 高颀, 刘继雄, 等. β钛合金成分设计: 理论、方法、实践[J]. 材料导报, 2017,31(3):44−51.

    Wang Guangrong , Gao Qin , Liu Jiwei , et al. Composition design of beta-titanium alloys: Theoretical, methodological and practical advances[J]. Materials Reports, 2017, 31(3): 44-51.
    [22] 杜赵新. 新型高强β钛合金的热处理和微合金化以及高温变形行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    Du Zhaoxin . Heat treatment and microalloying and high temperature deformation behavior of new high strength titanium alloy[D]. Harbin: Harbin Institute of Technology, 2014.
    [23] Cui Y J, Aoyagi K, Koizumi Y, et al. Effect of niobium addition on tensile properties and oxidation resistance of a titanium-based alloy[J]. Corrosion Science, 2020,180:109198.
    [24] Wu Huan, Zhao Yongqing, Ge Peng, et al. Effect of β stabilizing elements on the strengthening behavior of titanium a phase[J]. Rare Metal Materials and Engineering, 2012,41(5):805−810. (吴欢, 赵永庆, 葛鹏, 等. β稳定元素对钛合金α相强化行为的影响[J]. 稀有金属材料与工程, 2012,41(5):805−810. doi: 10.3969/j.issn.1002-185X.2012.05.012

    Wu Huan , Zhao Yongqing, Ge Peng , et al. Effect of β stabilizing elements on the strengthening behavior of titanium a phase[J]. Rare Metal Materials and Engineering, 2012, 41(5): 805-810 . doi: 10.3969/j.issn.1002-185X.2012.05.012
    [25] Zhao Y, Liu J, Zhou L. Analysis on the segregation of typical β alloying elements of Cu, Fe and Cr in Ti alloys[J]. Rare Metal Materials and Engineering, 2005,34(4):531−538.
    [26] Wu Xiaodong, Yang Guanjun, Ge Peng, et al. Inductions of β titanium alloy and solid state phase transition[J]. Titanium Industry Progress, 2008,(5):1−6. (吴晓东, 杨冠军, 葛鹏, 等. β钛合金及其固态相变的归纳[J]. 钛工业进展, 2008,(5):1−6. doi: 10.3969/j.issn.1009-9964.2008.05.001

    Wu Xiaodong, Yang Guanjun , Ge Peng, et al. Inductions of β titanium alloy and solid state phase transition[J]. Titanium Industry Progress, 2008(5): 1-6 . doi: 10.3969/j.issn.1009-9964.2008.05.001
    [27] Boyer, Rodney R. Design properties of a high-strength titanium alloy Ti-10V-2Fe-3Al[J]. JOM, 1980,32(3):61−65. doi: 10.1007/BF03354557
    [28] Qian Jiuhong. Application and development of new titanium alloys for aerospace[J]. Chinese Journal of Rare Metals, 2000,(3):218−223. (钱九红. 航空航天用新型钛合金的研究发展及应用[J]. 稀有金属, 2000,(3):218−223. doi: 10.3969/j.issn.0258-7076.2000.03.012

    Qian Jiuhong. Application and development of new titanium alloys for aerospace[J]. Chinese Journal of Rare Metals, 2000(3): 218-223. doi: 10.3969/j.issn.0258-7076.2000.03.012
    [29] Chen C C, Boyer R R. Practical considerations for manufacturing high-strength Ti-10V-2Fe-3A1 alloy forgings[J]. JOM, 1979,31(7):33−39. doi: 10.1007/BF03354533
    [30] Gerhard W, Boyer R R, Collings E W. Materials properties handbook: Titanium alloys[M]. USA: Materials Park, OH : ASM International, 1994.
    [31] Zhao Q Y, Sun Q Y, Xin S W, et al. High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process[J]. Materials Science and Engineering:A, 2022,845:143260. doi: 10.1016/j.msea.2022.143260
    [32] Sansoz F, Almesallmy M, Ghonem H. Ductility exhaustion mechanisms in thermally exposed thin sheets of a near-β titanium alloy[J]. Metallurgical & Materials Transactions A, 2004,35(10):3113−3127.
    [33] Boyer R R. Aerospace applications of beta titanium alloys[J]. JOM, 1994,46(7):20−23. doi: 10.1007/BF03220743
    [34] Qiu D, Zhang M, Kelly P, et al. Discovery of plate-shaped athermal ω phase forming pairs with α′ martensite in a Ti–5.26%Cr alloy[J]. Scripta Materialia, 2013,69(10):752−755. doi: 10.1016/j.scriptamat.2013.08.020
    [35] Zhao Hongxia, Yu Wenjun. Development and application of high strength titanium alloy BT22 in aviation industry[J]. Aeronautical Manufacturing Technology, 2010,(1):85−86, 90. (赵红霞, 虞文军. 航空用高强度BT22钛合金的研发和应用[J]. 航空制造技术, 2010,(1):85−86, 90. doi: 10.3969/j.issn.1671-833X.2010.01.017

    Zhao H X , Yu W J . Development and application of high strength titanium alloy BT22 in aviation industry[J]. Aeronautical Manufacturing Technology, 2010(1): 85-86, 90. doi: 10.3969/j.issn.1671-833X.2010.01.017
    [36] Jones N G, Dashwood R J, Dye D, et al. The flow behavior and microstructural evolution of Ti-5Al-5Mo-5V-3Cr during subtransus isothermal forging[J]. Metallurgical and Materials Transactions A, 2009,40(8):1944−1954. doi: 10.1007/s11661-009-9866-5
    [37] 李秀广. 热处理对高强β钛合金板材组织及性能影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    Li Xiuguang. Effect of heat treatment on microstructure and mechanical properties of high strength β titanium alloy sheets[D]. Harbin: Harbin Institute of Technology, 2016 .
    [38] 陈兆琦. 高强β钛合金高温变形行为及板材组织性能的研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    Chen Zhaoqi. High temperature deformation behavior and sheet microstructure and properties of high strength β titanium alloy[D]. Harbin: Harbin Institute of Technology, 2021.
    [39] Shekhar S, Sarkar R, Kar S K, et al. Effect of solution treatment and aging on microstructure and tensile properties of high strength β titanium alloy Ti–5Al–5V–5Mo–3Cr[J]. Materials and Design, 2015,66:596−610. doi: 10.1016/j.matdes.2014.04.015
    [40] None. The use of β titanium alloys in the aerospace industry[J]. Journal of Materials Engineering & Performance, 2013,22(10):2916−2920.
    [41] Cotton J D, Briggs R D, Boyer R R, et al. State of the art in beta titanium alloys for airframe applications[J]. JOM, 2015,67(6):1281−1303. doi: 10.1007/s11837-015-1442-4
    [42] 杨建辉. 锻态β钛合金组织性能及热变形行为的研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    Yang Jianhui. Research on microstructure and microstructure properties and hot deformation behavior of wrought as-forged beta titanium alloy[D]. Harbin: Harbin Institute of Technology, 2016.
    [43] Yang Dongyu, Fu Yanyan, Hui Songxiao, et al. Research and application of high strength and high toughness titanium alloys[J]. Chinese Journal of Rare Metals, 2011,35(4):575−580. (杨冬雨, 付艳艳, 惠松骁, 等. 高强高韧钛合金研究与应用进展[J]. 稀有金属, 2011,35(4):575−580. doi: 10.3969/j.issn.0258-7076.2011.04.017

    Yang Dongyu, Fu Yanyan, Hui Songxiao, et al. Research and application of high strength and high toughness titanium alloys[J]. Chinese Journal of Rare Metals, 2011, 35(4): 575-580. doi: 10.3969/j.issn.0258-7076.2011.04.017
    [44] Liu Rui , Hui Songxiao , Ye Wenjun , et al. Effects of heat-treatment on dynamic fracture toughness of TB10 titanium alloy[J]. Chinese Journal of Rare Metals, 2010,34(4):485−490. (刘睿, 惠松骁, 叶文君, 等. 热处理工艺对TB10钛合金动态断裂韧性的影响[J]. 稀有金属, 2010,34(4):485−490. doi: 10.3969/j.issn.0258-7076.2010.04.003

    Liu Rui , Hui Songxiao , Ye Wenjun , et al. Effects of heat-treatment on dynamic fracture toughness of TB10 titanium alloy[J]. Chinese Journal of Rare Metals, 2010,34(4): 485-490. doi: 10.3969/j.issn.0258-7076.2010.04.003
    [45] Zhao Xiaolong, Wang Xiaoxiang, Wang Xin. Effect of deformation and heat treatment on micro-structures and mechanical properties of cold rolled BTi-6554 alloy sheets[J]. Southern Metals, 2015,(5):5−7. (赵小龙, 王小翔, 王新. 变型量和热处理对BTi-6554钛合金冷轧板材组织和性能的影响[J]. 南方金属, 2015,(5):5−7. doi: 10.3969/j.issn.1009-9700.2015.05.002

    Zhao X L , Wang X X, Wang X . Effect of deformation and heat treatment on micro-structures and mechanical properties of cold rolled BTi-6554 alloy sheets[J]. Southern Metals, 2015(5): 5-7 . doi: 10.3969/j.issn.1009-9700.2015.05.002
    [46] Conrad Hans. Effect of interstitial solutes on the strength and ductility of titanium[J]. Progress in Materials Science, 1981, 26(2-4):123-403.
    [47] Xin Ji, Satoshi Emura, Liu Tianwei, et al. Effect of oxygen addition on microstructures and mechanical properties of Ti-7.5Mo alloy[J]. Journal of Alloys & Compounds, 2018,737:221−229.
    [48] Min X H, Emura S, Tsuchiya K, et al. Transition of multi-deformation modes in Ti–10Mo alloy with oxygen addition[J]. Materials Science and Engineering A, 2014,590:88−96. doi: 10.1016/j.msea.2013.10.010
    [49] Min X, Bai P, Emura S, et al. Effect of oxygen content on deformation mode and corrosion behavior in β-type Ti-Mo alloy[J]. Materials Science & Engineering A, 2016,684:534−541.
    [50] Lan Chunbo, Chen Feng , Chen Huijuan, et al. Influence of oxygen content on the microstructure and mechanical properties of cold rolled Ti-32.5Nb-6.8Zr-2.7Sn-xO alloys after aging treatment[J]. Journal of Materials Science & Technology, 2018,34(11):134−140.
    [51] Furuta T, Kuramoto S, Hwang J, et al. Mechanical properties and phase stability of Ti-Nb-Ta-Zr-O alloys[J]. Materials Transactions, 2007,48(5):1124−1130. doi: 10.2320/matertrans.48.1124
    [52] Duan H P, Xu H X, Su W H, et al. Effect of oxygen on the microstructure and mechanical properties of Ti-23Nb-0.7Ta-2Zr alloy[J]. International Journal of Minerals Metallurgy & Materials, 2012,19(12):6.
    [53] Niinomi Mitsuo,Nakai Masaaki, Hendrickson , et al. Influence of oxygen on omega phase stability in the Ti-29Nb-13Ta-4.6Zr alloy[J]. Scripta Materialia, 2016,123:144−148. doi: 10.1016/j.scriptamat.2016.06.027
    [54] Pinotti V E, Plaine A H, Silva M, et al. Influence of oxygen addition and aging on the microstructure and mechanical properties of a β-Ti-29Nb–13Ta–4Mo alloy[J]. Materials Science and Engineering A, 2021,819(18):141500.
    [55] Chen X, Chen S, Jiang Y, et al. Minocycline reduces oxygen–glucose deprivation-induced PC12 cell cytotoxicity via matrix metalloproteinase-9, integrin β1 and phosphorylated Akt modulation[J]. Neurological Sciences, 2013,34(8):1391−1396. doi: 10.1007/s10072-012-1246-z
    [56] Hennig R G , Trinkle D R , Bouchet J , et al. Impurities block the α to ω martensitic transformation in titanium[J]. Nature Materials, 2005,4:129-133.
    [57] Furuhara T, Annaka S, Tomio Y, et al. Superelasticity in Ti–10V–2Fe–3Al alloys with nitrogen addition[J]. Materials Science & Engineering A, 2006,438:825−829.
    [58] Ramarolahy A, Philippe Castany, Frédéric Prima, et al. Microstructure and mechanical behavior of superelastic Ti–24Nb–0.5O and Ti–24Nb–0.5N biomedical alloys[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012,9(9):83−90.
    [59] Xiu S, Lei W, Niinomi M, et al. Microstructure and fatigue behaviors of a biomedical Ti–Nb–Ta–Zr alloy with trace CeO2 additions[J]. Materials Science and Engineering A, 2014,619:112−118. doi: 10.1016/j.msea.2014.09.069
    [60] Blenkinsop P A, Jones I P. Effects of boron, carbon, and silicon additions on microstructure and properties of a Ti–15Mo based beta titanium alloy[J]. Materials Science & Technology, 2001,17(5):573−580.
    [61] Banoth R, Sarkar R, Bhattacharjee A, et al. Effect of boron and carbon addition on microstructure and mechanical properties of metastable beta titanium alloys[J]. Materials & Design, 2015,67:50−63.
    [62] Gao K W, Nakamura M. Microstructures and hydrogen embrittlement of Ti–49Al alloy[J]. Intermetallics, 2000,8(5):595−597.
    [63] Briant C L, Wang Z F, Chollocoop N. Hydrogen embrittlement of commercial purity titanium[J]. Corrosion Science, 2002,44(8):1875−1888.
    [64] Alvarez A M, Robertson I M, Birnbaum H K. Hydrogen embrittlement of a metastable β-titanium alloy[J]. Acta Materialia, 2004,52(14):4161−4175. doi: 10.1016/j.actamat.2004.05.030
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  1616
  • HTML全文浏览量:  311
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-14
  • 网络出版日期:  2024-01-11
  • 刊出日期:  2023-12-28

目录

    /

    返回文章
    返回