留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

废钒系催化剂回收利用技术路径分析及选择

赵备备 李兰杰 祁健 马瑞峰 王海龙 赵亮

赵备备, 李兰杰, 祁健, 马瑞峰, 王海龙, 赵亮. 废钒系催化剂回收利用技术路径分析及选择[J]. 钢铁钒钛, 2024, 45(2): 85-93. doi: 10.7513/j.issn.1004-7638.2024.02.013
引用本文: 赵备备, 李兰杰, 祁健, 马瑞峰, 王海龙, 赵亮. 废钒系催化剂回收利用技术路径分析及选择[J]. 钢铁钒钛, 2024, 45(2): 85-93. doi: 10.7513/j.issn.1004-7638.2024.02.013
Zhao Beibei, Li Lanjie, Qi Jian, Ma Ruifeng, Wang Hailong, Zhao Liang. Analysis and selection of technical paths for recycling and utilization of waste vanadium catalysts[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 85-93. doi: 10.7513/j.issn.1004-7638.2024.02.013
Citation: Zhao Beibei, Li Lanjie, Qi Jian, Ma Ruifeng, Wang Hailong, Zhao Liang. Analysis and selection of technical paths for recycling and utilization of waste vanadium catalysts[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 85-93. doi: 10.7513/j.issn.1004-7638.2024.02.013

废钒系催化剂回收利用技术路径分析及选择

doi: 10.7513/j.issn.1004-7638.2024.02.013
基金项目: 河北省自然科学基金资助项目(B2022318001);承德国家可持续发展议程创新示范区建设科技专项(202008F026)。
详细信息
    作者简介:

    赵备备,1988年出生,男,山东德州人,硕士,高级工程师,主要工作方向为钒钛资源清洁提取,E-mail:zhaobeibei@hbisco.com

    通讯作者:

    李兰杰,1983年出生,男,山东潍坊人,博士,正高级工程师,主要研究方向为钒钛资源清洁提取及深加工, E-mail:lilanjie20040014@163.com

  • 中图分类号: TF841.3,X757

Analysis and selection of technical paths for recycling and utilization of waste vanadium catalysts

  • 摘要: 在推进制造业绿色化发展过程中,废钒系催化剂的综合回收利用有着广阔的发展前景,是实现钒产业循环经济的迫切需求,探究低污染、低能耗、短流程、高效益、全回收、适于大规模运用的新工艺是废钒系催化剂回收利用技术的发展方向。通过分析现有废钒触媒和废钒钛系脱硝催化剂回收利用的主要方法、原理、途径及优缺点,可知目前研究工作的重点还是在降低工艺成本、简化工艺流程的前提下尽可能减少二次污染的产生,并进一步提高金属回收效率。机械预处理、先进的氧化工艺和选择性浸出等新技术值得进一步研究。基于承钢公司现有提钒钛工艺与设备,对废钒触媒和废钒钛系脱硝催化剂回收利用钒、钛等有价金属元素进行研究,并结合环保政策及建设成本等因素,提出了适宜的废钒系催化剂回收利用技术路线。
  • 图  1  钒渣与废钒触媒质量比对钒浸出率、浸出液中钾浓度的影响

    Figure  1.  Effect of mass ratio of vanadium slag to waste vanadium catalyst on V leaching rate and K concentration in leaching solution

    图  2  钒触媒回收利用技术路线

    Figure  2.  Technical roadmap for waste vanadium catalyst recycling and utilization

    图  3  钒、钨浸出率随NaOH浓度变化曲线

    Figure  3.  Leaching ratio of vanadium and tungsten at different NaOH concentrations

    图  4  主要元素浸出率随温度变化曲线

    Figure  4.  Leaching ratio of main elements at different temperatures

    图  5  主要元素浸出率随氧分压变化曲线

    Figure  5.  Leaching ratio of main elements at different oxygen partial pressures

    图  6  废钒钛系脱硝催化剂回收利用技术路线

    Figure  6.  Technical roadmap for recycling and utilization of waste V&Ti denitrification catalysts

    表  1  废钒触媒回收利用技术对比

    Table  1.   Comparison of recycling and utilization technologies for waste vanadium catalysts

    工艺 条件 浸出率/%
    酸浸提钒法 还原酸浸[16] 98.5
    还原酸浸[17] 98
    直接酸浸[18] 95
    氧化酸浸[19] 95.1
    钠化焙烧-浸出提钒[22] 95.2
    碱浸提钒法 Na2CO3和NaHCO3混合浸出[25] 89
    两段逆流碱浸法[9] 81.24~87.97
    空白高温氧化-铵盐浸出法[26] 91
    注:由于各研究所采用的废钒触媒的物理性质、化学成分不尽相同,对比数据仅供参考。条件:①50 ℃,SO2/V=1.5 mol-equiv;②30 ℃,pH=1 H2SO4,0.01 mol/L Na2SO3;③80~85 ℃,S/L =2.5,硫酸:水=4.73:100;④50 ℃,0.5 mol/L H2SO4,0.1 mol/L H2O2;⑤废钒触媒粒度140 μm,氧化焙烧温度800 ℃,焙烧时间2 h;水浸pH值8~8.5,渣碱浸pH值12;⑥Na2CO3质量分数14.2%,NaHCO3质量分数15.3%,液固比3:1,固体物料中w(KClO3)0.9%,pH11~12,80~90 ℃,1 h;⑦一段:液固液比为1:4,80 ℃,45 min,终点pH值控制13 ~14;二段:加碱量为原料五氧化二钒含量的1.2~1.3倍,80 ℃,2 h,固液比1:4;⑧氧化温度850 ℃,氧化时间3 h,浸出温度72~75 ℃,浸出时间2 h。
    下载: 导出CSV

    表  2  废脱硝催化剂回收利用技术对比

    Table  2.   Comparison of recycling and utilization technologies for waste denitration catalysts

    工艺 条件 钒浸出率/%
    直接酸浸法 草酸浸出[34] 85
    酒石酸浸出[36] 44
    盐酸浸出[37] 98
    直接碱浸法 常压碱浸[38] 92.94
    加压碱浸[39] 91.5
    高压碱浸[40] 50~60
    高温碱熔法 钠化焙烧-水浸[41] 49.15
    碳酸钠混合焙烧-稀硫酸浸出[42] 99.08
    直接合金化法 铁钛合金[43]
    Ti-Al基合金[44-45]
    注:由于各研究所采用的废脱硝催化剂的物理性质、化学成分不尽相同,对比数据仅供参考。条件:Ⅰ草酸浓度1.0 mol/L、固液比1/20 (g/mL)、反应温度 90 ℃、反应时间180 min ;Ⅱ酒石酸浓度为0.5 mol/L、浸取温度为100 ℃、液固比为10 mL/g、浸取时间为180 min;Ⅲ30 ℃,pH=1 H2SO4,0.01 mol/L Na2SO3;ⅣNaOH浓度为7.5 mol/L,温度为100 ℃;ⅤNaOH浓度为3 mol/L,温度250 ℃,固液比0.4;Ⅵ温度180~200 ℃,碱矿比0.6,液固比4;Ⅶ焙烧温度为900 ℃、焙烧时间为2 h、Na2CO3含量为30%;Ⅷ焙烧温度800 ℃、焙烧时间3 h、Na2CO3与催化剂的质量比1.2、硫酸浓度2%、液固比8、浸出温度80 ℃、浸出时间4 h;Ⅸ以金属铝作为还原剂将废脱硝催化剂中的二氧化钛还原为金属钛,并加入到铁液中制备铁钛合金;Ⅹ铝热还原-重熔精炼除杂工艺制备Ti-Al基合金,并添加不同含量的Cr元素,得到合金成分为Ti-~44%Al-(0.4%~0.9%)V-~2%W-3%Si-(0~3%)Cr。
    下载: 导出CSV

    表  3  废钒钛系脱硝催化剂钠化焙烧与加压碱浸提钒工艺对比

    Table  3.   Comparison of sodium roasting and pressurized alkaline leaching vanadium extraction processes for denitration catalysts

    反应温度/ ℃钒浸出率/%吨钒碱消耗量/t环 保投资成本
    钠化焙烧工艺85050~5260(Na2CO3)废水难以循环利用,SO2、NH3、NO2气体排放生产流程长,投资成本高
    加压碱浸提钒工艺16071.393(NaOH)可实现碱介质循环利用,无有害窑气排放生产流程短,投资成本低
    下载: 导出CSV
  • [1] Chen Donghui, Li Jiujiang, Zhao Beibei, et al. The green value outlined of strategic resources on vanadium[J]. World Nonferrous Metals, 2018(20):1−3. (陈东辉, 李九江, 赵备备, 等. 战略资源金属钒的绿色价值概述[J]. 世界有色金属, 2018(20):1−3. doi: 10.3969/j.issn.1002-5065.2018.20.001

    Chen Donghui, Li Jiujiang, Zhao Beibei, et al. The green value outlined of strategic resources on vanadium[J]. World Nonferrous Metals, 2018(20): 1−3. doi: 10.3969/j.issn.1002-5065.2018.20.001
    [2] Yang Shaoli, Liu Guoqin, Chen Housheng. Vanadium and titanium materials[M]. Beijing: Metallurgical Industry Press, 2007: 10−11. (杨绍利, 刘国钦, 陈厚生. 钒钛材料[M]. 北京: 冶金工业出版社, 2007: 10−11.

    Yang Shaoli, Liu Guoqin, Chen Housheng. Vanadium and titanium materials[M]. Beijing: Metallurgical Industry Press, 2007: 10−11.
    [3] Wang Shuai, Guo Yufeng, Jiang Tao, et al. Comprehensive utilization and industrial development direction of vanadium-titanium magnetite[J]. China Metallurgy, 2016,26(10):40−44. (王帅, 郭宇峰, 姜涛, 等. 钒钛磁铁矿综合利用现状及工业化发展方向[J]. 中国冶金, 2016,26(10):40−44.

    Wang Shuai, Guo Yufeng, Jiang Tao, et al. Comprehensive utilization and industrial development direction of vanadium-titanium magnetite[J]. China Metallurgy, 2016, 26(10): 40−44.
    [4] Chang Fuzeng, Zhao Beibei, Li Lanjie, et al. Research status and prospect of vanadium extraction from vanadium titano-magnetite[J]. Iron Steel Vanadium Titanium, 2018,39(5):71−78. (常福增, 赵备备, 李兰杰, 等. 钒钛磁铁矿提钒技术研究现状与展望[J]. 钢铁钒钛, 2018,39(5):71−78.

    Chang Fuzeng, Zhao Beibei, Li Lanjie, et al. Research status and prospect of vanadium extraction from vanadium titano-magnetite[J]. Iron Steel Vanadium Titanium, 2018, 39(5): 71−78.
    [5] Li Lanjie, Chen Donghui, Bai Ruiguo, et al. Research progress of extraction technology for vanadium & chromium from vanadium slags[J]. Multipurpose Utilization of Mineral Resources, 2013(2):7−11. (李兰杰, 陈东辉, 白瑞国, 等. 钒渣中钒铬提取技术研究进展[J]. 矿产综合利用, 2013(2):7−11.

    Li Lanjie, Chen Donghui, Bai Ruiguo, et al. Research progress of extraction technology for vanadium & chromium from vanadium slags[J]. Multipurpose Utilization of Mineral Resources, 2013(2): 7−11.
    [6] Meng Wenbo, Yan Baijun. Effect of vanadium extraction from stone coal vanadium ore by reducing roasting-oxidiation leaching conditions on vanadium recovery rate[J]. China Metallurgy, 2018,28(5):28−32. (孟文博, 闫柏军. 还原焙烧-氧化浸出对石煤钒浸出率的影响[J]. 中国冶金, 2018,28(5):28−32.

    Meng Wenbo, Yan Baijun. Effect of vanadium extraction from stone coal vanadium ore by reducing roasting-oxidiation leaching conditions on vanadium recovery rate[J]. China Metallurgy, 2018, 28(5): 28−32.
    [7] Liu Tao, Ge Ling, Zhang Yimin. Advances and development trend in key technologies for all-vanadium redox flow battery[J]. China Metallurgy, 2023,33(4):1−8,133. (刘涛, 葛灵, 张一敏. 全钒液流电池关键技术进展与发展趋势[J]. 中国冶金, 2023,33(4):1−8,133.

    Liu Tao, Ge Ling, Zhang Yimin. Advances and development trend in key technologies for all-vanadium redox flow battery[J]. China Metallurgy, 2023, 33(4): 1−8,133.
    [8] Zhan Shuhua. Factors affecting the activity of vanadium catalysts[J]. Inner Mongolia Petrochemical Industry, 2012,38(5):40−41. (湛淑华. 影响钒触媒活性的因素[J]. 内蒙古石油化工, 2012,38(5):40−41.

    Zhan Shuhua. Factors affecting the activity of vanadium catalysts[J]. Inner Mongolia Petrochemical Industry, 2012, 38(5): 40−41.
    [9] Wei Jinke, Zhang Qiang, Li Yongguang, et al. Analysis on causation for deactivation of medium temperature denitration catalyst in sintering machine[J]. Hebei Metallurgy, 2021(12):75−79. (韦晋科, 张强, 李永光. 烧结机中温SCR脱硝催化剂失活原因分析[J]. 河北冶金, 2021(12):75−79.

    Wei Jinke, Zhang Qiang, Li Yongguang, et al. Analysis on causation for deactivation of medium temperature denitration catalyst in sintering machine[J]. Hebei Metallurgy, 2021(12): 75−79.
    [10] Chen Xinglong, Xiao Liansheng, Xu Jie, et al. Study on recovering vanadium and molybdenum from spent catalyst[J]. Mining and Metallurgical Engineering, 2004(3):47−49. (陈兴龙, 肖连生, 徐劼, 等. 从废石油催化剂中回收钒和钼的试验研究[J]. 矿冶工程, 2004(3):47−49.

    Chen Xinglong, Xiao Liansheng, Xu Jie, et al. Study on recovering vanadium and molybdenum from spent catalyst[J]. Mining and Metallurgical Engineering, 2004(3): 47−49.
    [11] Deng Juzhang. Recycling of waste vanadium catalyst[J]. Journal of Chemical Fertilizer Industry, 1990(4):40−41. (邓聚长. 废旧钒触媒的再生利用[J]. 化肥工业, 1990(4):40−41.

    Deng Juzhang. Recycling of waste vanadium catalyst[J]. Journal of Chemical Fertilizer Industry, 1990(4): 40−41.
    [12] Jiang Guoli, Jiang Fuhua, Shen Zhaoquan et al. Feasibility of recovery of vanadium pentoxide from waste vanadium catalyst[J]. Environmetal Science & Technology, 1990(2):13−14, 49. (蒋国礼, 蒋馥华, 申照全, 等. 从废钒触媒回收五氧化二钒的可行性[J]. 环境科学与技术, 1990(2):13−14, 49.

    Jiang Guoli, Jiang Fuhua, Shen Zhaoquan et al. Feasibility of recovery of vanadium pentoxide from waste vanadium catalyst[J]. Environmetal Science & Technology, 1990(2): 13−14, 49.
    [13] Liu Haipei. Research on resource utilization of waste vanadium and titanium denitrification catalyst[D]. Nanjing: Nanjing University of Technology, 2016. (刘海沛. 废弃钒钛脱硝催化剂资源化利用研究[D]. 南京: 南京工业大学, 2016.

    Liu Haipei. Research on resource utilization of waste vanadium and titanium denitrification catalyst[D]. Nanjing: Nanjing University of Technology, 2016.
    [14] Liu Haipei, Yan Wei, Li Zhong, et al. Study on the preparation of porcelain brick by waste denitration catalyst[J]. Environmental Engineering, 2017(s2):242−246. (刘海沛, 严巍, 李众, 等. 废弃脱硝催化剂制备瓷质砖的研究[J]. 环境工程, 2017(增刊2):242−246.

    Liu Haipei, Yan Wei, Li Zhong, et al. Study on the preparation of porcelain brick by waste denitration catalyst[J]. Environmental Engineering, 2017(s2): 242−246.
    [15] Liu Bin, Yu Shaoming, Zhang Ying, et al. Study on comprehensive recovery and utilization of waste vanadium catalyst[J]. Inorganic Chemicals Industry, 2012,44(11):57−59. (刘彬, 于少明, 张颍, 等. 废钒催化剂综合回收利用技术的研究[J]. 无机盐工业, 2012,44(11):57−59.

    Liu Bin, Yu Shaoming, Zhang Ying, et al. Study on comprehensive recovery and utilization of waste vanadium catalyst[J]. Inorganic Chemicals Industry, 2012, 44(11): 57−59.
    [16] Romanovskaia E, Romanovski V, Kwapinski W, et al. Selective recovery of vanadium pentoxide from spent catalysts of sulfuric acid production: Sustainable approach[J]. Hydrometallurgy, 2021,200:105568. doi: 10.1016/j.hydromet.2021.105568
    [17] Nikiforova A, Kozhura O, Pasenko O. Leaching of vanadium by sulfur dioxide from spent catalysts for sulfuric acid production[J]. Hydrometallurgy, 2016,164:31−37. doi: 10.1016/j.hydromet.2016.05.004
    [18] Zhang Ling. Study on recovery of vanadium pentoxide by precipitation of vanadium with acidic ammonium salt as catalyst[J]. Nonferrous Metals and Metallurgy, 2023,39(1):48−51, 34. (张玲. 废钒触媒酸性铵盐沉钒工艺回收五氧化二钒的研究[J]. 有色矿冶, 2023,39(1):48−51, 34.

    Zhang Ling. Study on recovery of vanadium pentoxide by precipitation of vanadium with acidic ammonium salt as catalyst[J]. Nonferrous Metals and Metallurgy, 2023, 39(1): 48−51, 34.
    [19] Erust C, Akcil A, Bedelova Z, et al. Recovery of vanadium from spent catalysts of sulfuric acid plant by using inorganic and organic acids: laboratory and semi-pilot tests[J]. Waste Management, 2016,49:455−461. doi: 10.1016/j.wasman.2015.12.002
    [20] Hu Jianfeng. Research on new technology for extracting vanadium from waste vanadium catalyst[D]. Kunming: Kunming University of Science and Technology, 2006. (胡建锋. 从废钒触媒中提钒新工艺的研究[D]. 昆明: 昆明理工大学, 2006.

    Hu Jianfeng. Research on new technology for extracting vanadium from waste vanadium catalyst[D]. Kunming: Kunming University of Science and Technology, 2006.
    [21] Wang Xinwen, Lei Zhaomin, Duan Mingyou, et al. Experimental study of recovering refined vanadium pentoxide from waste vanadium catalyst[J]. Sulfuric Acid Industry, 1998(2):49−53, 59. (王新文, 雷兆敏, 段铭有, 等. 从废钒催化剂中回收精制五氧化二钒的试验研究[J]. 硫酸工业, 1998(2):49−53, 59.

    Wang Xinwen, Lei Zhaomin, Duan Mingyou, et al. Experimental study of recovering refined vanadium pentoxide from waste vanadium catalyst[J]. Sulfuric Acid Industry, 1998(2): 49−53, 59.
    [22] Liu Bin. Study on the technology of comprehensive recovery and utilization of waste vanadium catalyst[D]. Hefei: Hefei University of Technology, 2012. (刘彬. 废钒催化剂综合回收利用技术研究[D]. 合肥: 合肥工业大学, 2012.

    Liu Bin. Study on the technology of comprehensive recovery and utilization of waste vanadium catalyst[D]. Hefei: Hefei University of Technology, 2012.
    [23] Hao Xicai, Jing Zhongjian, Hu Binjie. Study on recovery of vanadium oxide from waste catalyst containing vanadium[J]. Inorganic Chemicals Industry, 2010,42(11):48−50. (郝喜才, 景中建, 胡斌杰. 从废钒催化剂中回收钒氧化物的研究[J]. 无机盐工业, 2010,42(11):48−50.

    Hao Xicai, Jing Zhongjian, Hu Binjie. Study on recovery of vanadium oxide from waste catalyst containing vanadium[J]. Inorganic Chemicals Industry, 2010, 42(11): 48−50.
    [24] Liu Bo, Tong Qingyun, Li Guoliang. Recovering of vanadium pentoxide from vanadic catalyzer waste by oxidizing roasting[J]. Journal of Sichuan University (Engineering Science Edition), 2002(2):112−115. (刘波, 童庆云, 李国良. 氧化焙烧法回收废钒触媒中的钒[J]. 四川大学学报(工程科学版), 2002(2):112−115.

    Liu Bo, Tong Qingyun, Li Guoliang. Recovering of vanadium pentoxide from vanadic catalyzer waste by oxidizing roasting[J]. Journal of Sichuan University (Engineering Science Edition), 2002(2): 112−115.
    [25] Jiang Fuhua, Zhang Ping. Experiment of recovering vanadium pentoxide from waste vanadium catalyst by trona leaching[J]. Sulfuric Acid Industry, 2000(4):28−30, 57. (蒋馥华, 张萍. 用天然碱浸法从废钒催化剂中回收五氧化二钒的试验[J]. 硫酸工业, 2000(4):28−30, 57. doi: 10.3969/j.issn.1002-1507.2000.04.008

    Jiang Fuhua, Zhang Ping. Experiment of recovering vanadium pentoxide from waste vanadium catalyst by trona leaching[J]. Sulfuric Acid Industry, 2000(4): 28−30, 57. doi: 10.3969/j.issn.1002-1507.2000.04.008
    [26] Xu Biqiong. Research on abstracting V2O5 from spent vanadium catalyst[J]. Chemical Industry and Engineering Progress, 2002(3):200−202. (许碧琼. 从废钒触媒中回收钒氧化物[J]. 化工进展, 2002(3):200−202.

    Xu Biqiong. Research on abstracting V2O5 from spent vanadium catalyst[J]. Chemical Industry and Engineering Progress, 2002(3): 200−202.
    [27] Mo Yazhi, Huang Peizheng, Tang Jialin. Recovery of vanadium pentoxide from waste vanadium catalyst by ammonia leaching[J]. Guangxi Chemical Industry, 1992,21(2):2. (莫亚枝, 黄佩征, 唐家林. 氨性液浸出法回收废钒触媒中的五氧化二钒[J]. 广西化工, 1992,21(2):2.

    Mo Yazhi, Huang Peizheng, Tang Jialin. Recovery of vanadium pentoxide from waste vanadium catalyst by ammonia leaching[J]. Guangxi Chemical Industry, 1992, 21(2): 2.
    [28] Li Jianchi. Preparation of ammonium metavanadate from waste vanadium catalyst[J]. Shaanxi Chemical Industry, 1991(Z1):61. (李建池. 用废钒触媒制备偏钒酸铵[J]. 陕西化工, 1991(Z1):61.

    Li Jianchi. Preparation of ammonium metavanadate from waste vanadium catalyst[J]. Shaanxi Chemical Industry, 1991(Z1): 61.
    [29] Jiang Fuhua, Shen Zhaoquan. Study on recovery of vanadium pentoxide from waste vanadium catalyst[J]. Hubei Chemical Industry, 1991(1):27−29. (蒋馥华, 申照全. 废钒触媒中五氧化二钒的回收研究[J]. 湖北化工, 1991(1):27−29.

    Jiang Fuhua, Shen Zhaoquan. Study on recovery of vanadium pentoxide from waste vanadium catalyst[J]. Hubei Chemical Industry, 1991(1): 27−29.
    [30] Wang Baodong, Liu Zilin, Lin Dehai, et al. A review on recovery and utilization of spent V2O5-WO3/TiO2 catalyst[J]. Materials Reports, 2019, 35(15): 15001-15010. (王宝冬, 刘子林, 林德海, 等. 废钒-钛系脱硝催化剂回收利用策略与技术进展[J]. 材料导报, 2021, 35(15): 15001-15010.

    Wang Baodong, Liu Zilin, Lin Dehai, et al. A review on recovery and utilization of spent V2O5-WO3/TiO2 catalyst[J]. Materials Reports, 2019, 35(15): 15001-15010.
    [31] Shi Xiayi, Dong Yanping, Cui Yan. Analysis and comparison of sintering gas denitrification technology[J]. China Metallurgy, 2017,27(8):56−59. (史夏逸, 董艳苹, 崔岩. 烧结烟气脱硝技术分析及比较[J]. 中国冶金, 2017,27(8):56−59.

    Shi Xiayi, Dong Yanping, Cui Yan. Analysis and comparison of sintering gas denitrification technology[J]. China Metallurgy, 2017, 27(8): 56−59.
    [32] Li Qiang, Chen Tiejun, Li Qiyong, et al. Research progress on resource utilization of waste SCR denitration catalyst[J]. China Metallurgy, 2020,30(5):1−10. (李强, 陈铁军, 李奇勇, 等. 废弃SCR脱硝催化剂资源化利用研究进展[J]. 中国冶金, 2020,30(5):1−10.

    Li Qiang, Chen Tiejun, Li Qiyong, et al. Research progress on resource utilization of waste SCR denitration catalyst[J]. China Metallurgy, 2020, 30(5): 1−10.
    [33] Chen Fengqiao, Cui Chang, Qi Liqiang. Utilizing organic acids for V2O5 recovery from denitration catalyst alkaline inactivation[J]. Acta Chemologica Sinica, 2017,68(12):4717−4722. (陈凤桥, 崔畅, 齐立强. 碱失活SCR脱硝催化剂的有机酸回收[J]. 化工学报, 2017,68(12):4717−4722.

    Chen Fengqiao, Cui Chang, Qi Liqiang. Utilizing organic acids for V2O5 recovery from denitration catalyst alkaline inactivation[J]. Acta Chemologica Sinica, 2017, 68(12): 4717−4722.
    [34] Wu Wenfen. Basic research on recovery of vanadium, tungsten and carrier from spent denitrification catalyst[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2020. (武文粉. 废脱硝催化剂回收钒钨及载体循环利用过程基础研究[D]. 北京: 中国科学院过程工程研究所, 2020.

    Wu Wenfen. Basic research on recovery of vanadium, tungsten and carrier from spent denitrification catalyst[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2020.
    [35] An Jiakang, Wang Luzhu, Deng Lifeng, et al. Orthogonal experimental optimization of vanadium leaching rate from deactivated de NOx catalyst by organic acid[J]. Applied Chemical Industry, 2022, 51(6): 1555-1558. (安家康, 王露珠, 邓立锋, 等. 有机酸下失活脱硝催化剂钒浸出率的正交试验优化研究[J]. 应用化工, 2022, 51(6): 1555-1558.

    An Jiakang, Wang Luzhu, Deng Lifeng, et al. Orthogonal experimental optimization of vanadium leaching rate from deactivated de NOx catalyst by organic acid[J]. Applied Chemical Industry, 2022, 51(6): 1555-1558.
    [36] Zheng Yilin, Dai Shijin, Zhao Youcai, et al. Selective leaching of vanadium and tungsten from spent SCR catalyst using organic acids[J]. Environmental Protection of Chemical Industry, 2020,40(2):162−168. (郑怡琳, 戴世金, 赵由才, 等. 废SCR催化剂中钒和钨的有机酸浸出[J]. 化工环保, 2020,40(2):162−168. doi: 10.3969/j.issn.1006-1878.2020.02.009

    Zheng Yilin, Dai Shijin, Zhao Youcai, et al. Selective leaching of vanadium and tungsten from spent SCR catalyst using organic acids[J]. Environmental Protection of Chemical Industry, 2020, 40(2): 162−168. doi: 10.3969/j.issn.1006-1878.2020.02.009
    [37] Li Licheng, Wang Lei, Zhao Xuejuan, et al. Comparison of effect of different acid treatments on vanadium extraction of waste deNOx catalyst[J]. The Chinese Journal of Nonferrous Metals, 2016,26(10):2230−2237. (李力成, 王磊, 赵学娟, 等. 几种酸在废弃脱硝催化剂中提钒效果的比较[J]. 中国有色金属学报, 2016,26(10):2230−2237.

    Li Licheng, Wang Lei, Zhao Xuejuan, et al. Comparison of effect of different acid treatments on vanadium extraction of waste deNOx catalyst[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(10): 2230−2237.
    [38] Tang Dingling, Song Hao, Liu Dingding, et al. Study on leaching kinetics of extracting vanadium and tungsten by sodium hydroxide from spent SCR catalyst[J]. Chinese Journal of Environmental Engineering, 2017,11(2):1093−1100. (唐丁玲, 宋浩, 刘丁丁, 等. 废弃脱硝催化剂碱浸提取钒和钨的浸出动力学研究[J]. 环境工程学报, 2017,11(2):1093−1100.

    Tang Dingling, Song Hao, Liu Dingding, et al. Study on leaching kinetics of extracting vanadium and tungsten by sodium hydroxide from spent SCR catalyst[J]. Chinese Journal of Environmental Engineering, 2017, 11(2): 1093−1100.
    [39] In-Hyeok C, Gyeonghye M, Jin-Young L, et al. Extraction of tungsten and vanadium from spent selective catalytic reduction (SCR) catalyst for stationary application by pressure leaching process[J]. Journal of Cleaner Production, 2018,197(1):163−169.
    [40] Li Xiaowen. Study on recovery of tungsten-vanadium by high pressure alkaline leaching of waste SCR catalyst[D]. Ganzhou: Jiangxi University of Science and Technology, 2020. (李小文. 废SCR催化剂高压碱浸回收钨钒的工艺研究[D]. 赣州: 江西理工大学, 2020.

    Li Xiaowen. Study on recovery of tungsten-vanadium by high pressure alkaline leaching of waste SCR catalyst[D]. Ganzhou: Jiangxi University of Science and Technology, 2020.
    [41] Zhou Kai, Lu Bin, Wang Sheng, et al. Research on recovery process of Ti, V and W in waste SCR denitration catalyst[J]. Electric Power Technology and Environmental Protection, 2019,35(4):8−13. (周凯, 陆斌, 王圣, 等. 废弃SCR脱硝催化剂中Ti、V、W元素回收工艺研究[J]. 电力科技与环保, 2019,35(4):8−13.

    Zhou Kai, Lu Bin, Wang Sheng, et al. Research on recovery process of Ti, V and W in waste SCR denitration catalyst[J]. Electric Power Technology and Environmental Protection, 2019, 35(4): 8−13.
    [42] Jia Yong, Ding Wanli, Ding Xilou, et al. The leaching of tungsten and vanadium from spent selective catalytic reduction catalyst[J]. Acta Scientiae Circumstantiae, 2016,36(10):3759−3764. (贾勇, 丁万丽, 丁希楼, 等. 废SCR脱硝催化剂中钨和钒的浸出试验研究[J]. 环境科学学报, 2016,36(10):3759−3764.

    Jia Yong, Ding Wanli, Ding Xilou, et al. The leaching of tungsten and vanadium from spent selective catalytic reduction catalyst[J]. Acta Scientiae Circumstantiae, 2016, 36(10): 3759−3764.
    [43] Chen Guangyu. Study on direct alloying of waste denitration catalyst[D]. Baotou: Inner Mongolia University of Science and Technology, 2019. (陈广玉. 废弃脱硝催化剂直接合金化研究[D]. 包头: 内蒙古科技大学, 2019.

    Chen Guangyu. Study on direct alloying of waste denitration catalyst[D]. Baotou: Inner Mongolia University of Science and Technology, 2019.
    [44] Piao Rongxun, Ma Lan, Yang Shaoli, et al. Experimental study on the preparation of Ti-Al based alloy by aluminothermic reduction-vacuum electromagnetic levitation refining of waste denitration catalyst[J]. Iron Steel Vanadium Titanium, 2019,40(3):39−45. (朴荣勋, 马兰, 杨绍利, 等. 废弃脱硝催化剂铝热还原-真空磁悬浮精炼制备钛铝基合金试验研究[J]. 钢铁钒钛, 2019,40(3):39−45.

    Piao Rongxun, Ma Lan, Yang Shaoli, et al. Experimental study on the preparation of Ti-Al based alloy by aluminothermic reduction-vacuum electromagnetic levitation refining of waste denitration catalyst[J]. Iron Steel Vanadium Titanium, 2019, 40(3): 39−45.
    [45] Piao Rongxun, Ma Lan, Yang Shaoli, et al. Experimental study on preparation of Cr-containing Ti-Al based alloys by aluminothermic reduction-remelting of waste SCR Ti-based denitration catalyst[J]. Iron Steel Vanadium Titanium, 2019,40(2):79−86. (朴荣勋, 马兰, 杨绍利, 等. 废SCR钛基脱硝催化剂铝热还原重熔制备含铬钛铝基合金的试验研究[J]. 钢铁钒钛, 2019,40(2):79−86.

    Piao Rongxun, Ma Lan, Yang Shaoli, et al. Experimental study on preparation of Cr-containing Ti-Al based alloys by aluminothermic reduction-remelting of waste SCR Ti-based denitration catalyst[J]. Iron Steel Vanadium Titanium, 2019, 40(2): 79−86.
    [46] Zhao Beibei, Li Lanjie, Liu Lin, et al. Study on vanadium extraction process of spent vanadium catalyst[J]. Multipurpose Utilization of Mineral Resources, 2019(6):80−83. (赵备备, 李兰杰, 柳林, 等. 废钒触媒提钒工艺研究[J]. 矿产综合利用, 2019(6):80−83.

    Zhao Beibei, Li Lanjie, Liu Lin, et al. Study on vanadium extraction process of spent vanadium catalyst[J]. Multipurpose Utilization of Mineral Resources, 2019(6): 80−83.
    [47] Zhang Zhenquan, Zhao Beibei, Li Lanjie, et al. Study on selective separation of vanadium, titanium and tungsten from spent SCR denitration catalyst[J]. Iron Steel Vanadium Titanium, 2021,42(1):24−31. (张振全, 赵备备, 李兰杰, 等. 废SCR脱硝催化剂钒、钛、钨选择性分离研究[J]. 钢铁钒钛, 2021,42(1):24−31. doi: 10.7513/j.issn.1004-7638.2021.01.004

    Zhang Zhenquan, Zhao Beibei, Li Lanjie, et al. Study on selective separation of vanadium, titanium and tungsten from spent SCR denitration catalyst[J]. Iron Steel Vanadium Titanium, 2021, 42(1): 24−31. doi: 10.7513/j.issn.1004-7638.2021.01.004
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  11
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-28
  • 网络出版日期:  2024-05-14
  • 刊出日期:  2024-04-30

目录

    /

    返回文章
    返回