中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒渣提钒浸出液的钒铬分离研究进展

王正豪

王正豪. 钒渣提钒浸出液的钒铬分离研究进展[J]. 钢铁钒钛, 2025, 46(1): 10-19. doi: 10.7513/j.issn.1004-7638.2025.01.002
引用本文: 王正豪. 钒渣提钒浸出液的钒铬分离研究进展[J]. 钢铁钒钛, 2025, 46(1): 10-19. doi: 10.7513/j.issn.1004-7638.2025.01.002
WANG Zhenghao. Recent progress developments on vanadium and chromium separation in vanadium extraction leachate from vanadium slag[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 10-19. doi: 10.7513/j.issn.1004-7638.2025.01.002
Citation: WANG Zhenghao. Recent progress developments on vanadium and chromium separation in vanadium extraction leachate from vanadium slag[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 10-19. doi: 10.7513/j.issn.1004-7638.2025.01.002

钒渣提钒浸出液的钒铬分离研究进展

doi: 10.7513/j.issn.1004-7638.2025.01.002
基金项目: 国家自然科学基金委创新研究群体项目(52121004);国家自然科学基金青年科学基金项目(52404372);中国博士后科学基金面上项目(2024M753671);中国博士后科学基金国家资助计划(GZC20242056)。
详细信息
    作者简介:

    王正豪,1995年出生,男,云南文山人,博士后,主要从事有色金属冶金,E-mail:zhwangcsu@163.com

  • 中图分类号: TF841.3

Recent progress developments on vanadium and chromium separation in vanadium extraction leachate from vanadium slag

  • 摘要: 钒铬在自然界中常以伴生矿物—钒钛磁铁矿的形式共存,这一特性在资源提取阶段对钒铬的高效分离构成了显著的技术挑战,鉴于这一问题,系统分析了目前提钒工艺中普遍采用的几种钒铬分离技术,如化学沉淀法、离子交换法和溶剂萃取法等在应用过程中表现出的优势和存在的问题。指出探索更加高效、经济的钒铬分离方法是当前研究的重点,同时,未来的钒铬分离技术上应加强环保技术的研究与应用,解决分离过程中产生的废水、废渣等环境问题,从而实现高效、绿色、可持续生产。
  • 图  1  钒渣回收V2O5工艺

    Figure  1.  V2O5 recovery process from vanadium slag

    图  2  水解过程的机理示意[27]

    Figure  2.  Schematic diagram of the mechanism of the hydrolysis process[27]

    图  3  DDTC络合法分步回收V−Cr−Fe示意[29]

    Figure  3.  Schematic diagram of V−Cr−Fe ternary slime stepwise recovery using DDTC[29]

    图  4  V(Ⅴ)和Cr(Ⅵ)在ZrO2上的选择性吸附机制示意[35]

    Figure  4.  Schematic representation of the selective adsorption mechanism of V(Ⅴ) and Cr(Ⅵ) on ZrO2[35]

    图  5  较高浓度SO42−下P204萃取Cr(Ⅲ)的反应路径[40]

    Figure  5.  Reaction pathway of Cr(Ⅲ) extraction under higher SO42− concentrations[40]

    图  6  三液相体系分离高铬钒渣酸浸出液中的V(Ⅴ)和Cr(Ⅵ)机理[50]

    Figure  6.  Mechanism of separation of V(Ⅴ) and Cr(Ⅵ) from acid leach solution of HCVS by three liquid phase system[50]

    表  1  钒渣提钒方法及其浸出液中钒铬浓度

    Table  1.   Vanadium extraction methods from vanadium slag and the vanadium-chromium concentration in leaching solution

    提取方法 元素价态 浓度/(g·L–1)
    V Cr
    钠化焙烧-水浸[20] V(Ⅴ), Cr(Ⅵ) 14.00 11.20
    CaO焙烧- H2SO4浸出[21] V(Ⅴ), Cr(Ⅵ) 0.24 0.001
    MnCO3焙烧-H2SO4浸出[22] V(Ⅴ), Cr(Ⅵ) 10.30 0.008
    钛白废酸压力浸出[23] V(Ⅴ), Cr(Ⅵ) 7.06 1.96
    MgO焙烧-H2SO4浸出[24] V(Ⅴ), Cr(Ⅵ) 8.31 0.005
    选择性氧化焙烧-压力酸浸[18] V(Ⅳ), Cr(Ⅲ) 9.01 1.94
    硫酸焙烧-水浸[16] V(Ⅳ), Cr(Ⅲ) 11.8 3.36
    压力酸浸[17] V(Ⅳ), Cr(Ⅲ) 4.79 1.05
    下载: 导出CSV

    表  2  不同沉淀钒、铬方法的对比

    Table  2.   Comparison of different methods of precipitating V and Cr

    沉淀方法沉淀产物优点缺点
    铵盐沉钒APV用于钒浓度较高的溶液;可获得不同形貌的沉淀产物会产生较多含有氨氮的废水
    水解沉钒xNa2O∙yV2O5zH2O操作简单,生产周期短,生产成本低,允许钒浓度在较大范围波动产品纯度较低,酸耗大
    铁盐沉钒FeVO4用于铬含量较低的含钒溶液产品纯度低;不适用于钒含量较高的溶液
    钙盐沉钒Ca(VO3)2用于钒浓度较低的溶液杂质含量要求高,沉淀后产生废物较多
    络合沉钒VO(DDTC)2用于铁锰浓度较低的溶液,钒铬分离系数大钒的提纯步骤较多
    钡盐沉铬BaCrO3用于钒浓度较高的含铬溶液沉淀物含重金属
    磷酸盐沉铬CrPO4用于铬含量较高的溶液;可选择性沉淀铬钒损失较大,产品纯度不高
    下载: 导出CSV

    表  3  常用于吸附V或Cr的离子交换树脂[31]

    Table  3.   Common ion exchange resins used for adsorption of V or Cr[31]

    种类 功能基团 吸附离子 吸附容量 /(mg·g−1)
    ZGA414 —N(CH3)2·H2O H2V10O284− 150*
    IRA400 —N+R3 HVO42− 9.8
    D751 —N(CH3)2C2H4OH H2VO4 61.1
    D314 —N(CH3)2 V10O286− 98*
    TP207 C4H7NO4 Cr3+ 20.6
    D453 —N(CH3)2 VO2+ 36.9
    注:*处的单位为g/L
    下载: 导出CSV

    表  4  不同种类萃取剂的研究现状

    Table  4.   Research status on different types of extractants

    种类 酸性萃取剂 中性和螯合萃取剂 碱性萃取剂
    常用萃取剂 P204、P507、C272 TBP、C923、MIBK 伯胺(N1923)、叔胺(N235、TOA)、季铵盐(A336、N263)
    常用萃取体系 硫酸、盐酸体系 盐酸体系 酸性体系、碱性体系
    萃取钒铬价态 V(Ⅳ)、Cr(Ⅲ) V(Ⅴ)、Cr(Ⅵ) V(Ⅳ)、V(Ⅴ)、Cr(Ⅵ)
    萃取机理 阳离子交换 中性络合萃取 阴离子交换、中性络合萃取
    优点 饱和容量大;无乳化现象、易分层;
    萃取剂再生效果好
    易反萃;用于盐酸体系选择性好 适用范围广;物化性质稳定;选择性好
    缺点 对V(Ⅴ)和Fe(Ⅲ)选择性差,萃取前
    需要进行预处理;易腐蚀设备
    多级萃取后黏度增加;
    循环使用出现第三相
    易出现第三相;需多级逆流萃取;反萃剂用量大
    下载: 导出CSV

    表  5  溶剂萃取钒和铬的萃取剂和萃取效率

    Table  5.   Extraction agent and extraction efficiency for solvent extraction of vanadium and chromium

    浓度/(g·L−1) 萃取剂 萃取效率/% 参考文献
    V Cr V Cr βV/Cr
    6.2 11.7 N1923 65.0 0.85 [46]
    1.0 1.0 酸化N1923 94.38 [48]
    5.0 1.7 N263 98.4 98.1 [50]
    12.00 6.48 LK-N21 90 90 [52]
    2.26 0.32 [C8mim][PF6] 56 [53]
    20.48 3.62 P507 99.91 95.40 [54]
    下载: 导出CSV
  • [1] GUO A Q, WANG Z H, CHEN L, et al. A comprehensive review of the mechanism and modification strategies of V2O5 cathodes for aqueous zinc-ion batteries[J]. ACS Nano, 2024,18:27261-27286. doi: 10.1021/acsnano.4c09899
    [2] ZUO G. Thinking on the problem of stable supply of scarce strategic metal resources in china—take tantalum, niobium, chromium and cobalt for example[J]. Natural Resource Economics of China, 2023,36(9):4-13. (左更. 我国稀缺性战略金属资源保供稳供问题的思考—以钽、铌、铬、钴为例[J]. 中国国土资源经济, 2023,36(9):4-13.

    ZUO G. Thinking on the problem of stable supply of scarce strategic metal resources in china—take tantalum, niobium, chromium and cobalt for example[J]. Natural Resource Economics of China, 2023, 36(9): 4-13.
    [3] CHEN H B, ZHOU Z H, ZHANG Z J, et al. Research progress in the comprehensive recovery of vanadium-titanium magnetite[J]. Modern Mining, 2023,39(1):7-9. (陈海彬, 周振华, 张作金, 等. 钒钛磁铁矿综合回收研究进展[J]. 现代矿业, 2023,39(1):7-9. doi: 10.3969/j.issn.1674-6082.2023.01.002

    CHEN H B, ZHOU Z H, ZHANG Z J, et al. Research progress in the comprehensive recovery of vanadium-titanium magnetite[J]. Modern Mining, 2023, 39(1): 7-9. doi: 10.3969/j.issn.1674-6082.2023.01.002
    [4] LIU S Y, XUE W H, AND WANG L J. Extraction of the rare element vanadium from vanadium-containing materials by chlorination method: a critical review[J]. Metals, 2021,11.8:1301-1310.
    [5] WANG L Z, JIANG C L, ZHU J X, et al. Study on the occurrence state of iron and chromium in Hongge vanadium-titanomagnetite ore[J]. Iron Steel Vanadium Titanium, 2024,45(2):102-107. (王利珍, 姜楚灵, 朱家祥, 等. 红格钒钛磁铁矿中铁、铬的赋存状态研究[J]. 钢铁钒钛, 2024,45(2):102-107. doi: 10.7513/j.issn.1004-7638.2024.02.015

    WANG L Z, JIANG C L, ZHU J X, et al. Study on the occurrence state of iron and chromium in Hongge vanadium-titanomagnetite ore[J]. Iron Steel Vanadium Titanium, 2024, 45(2): 102-107. doi: 10.7513/j.issn.1004-7638.2024.02.015
    [6] GAO G J. Study on comprehensive utilization of high-chromium vanadium slag[D]. Beijing: University of Chinese Academy of Sciences. 2017. (高官金. 高铬钒渣综合利用研究[D]. 北京: 中国科学院大学, 2017.

    GAO G J. Study on comprehensive utilization of high-chromium vanadium slag[D]. Beijing: University of Chinese Academy of Sciences. 2017.
    [7] CHEN L. Basic research on the direct recovery of low valence vanadium from vanadium slag[D]. Chengdu: Sichuan University. 2021. (陈良. 从钒渣中直接回收低价态钒的基础研究[D]. 成都: 四川大学, 2021.

    CHEN L. Basic research on the direct recovery of low valence vanadium from vanadium slag[D]. Chengdu: Sichuan University. 2021.
    [8] AN Y R, MA B Z, LI X, et al. A review on the roasting-assisted leaching and recovery of V from vanadium slag[J]. Process Safety and Environmental Protection, 2023,173:263-276. doi: 10.1016/j.psep.2023.03.013
    [9] CHANG F Z, ZHAO B B, LI L J, et al. Research status and prospect of vanadium extraction from vanadium titano-magnetite[J]. Iron Steel Vanadium Titanium, 2018,39(5):71-78. (常福增, 赵备备, 李兰杰, 等. 钒钛磁铁矿提钒技术研究现状与展望[J]. 钢铁钒钛, 2018,39(5):71-78. doi: 10.7513/j.issn.1004-7638.2018.05.013

    CHANG F Z, ZHAO B B, LI L J, et al. Research status and prospect of vanadium extraction from vanadium titano-magnetite[J]. Iron Steel Vanadium Titanium, 2018, 39(5): 71-78. doi: 10.7513/j.issn.1004-7638.2018.05.013
    [10] LEE J C, KUR N W, KIM E Y, et al. A review on the metallurgical recycling of vanadium from slags: towards a sustainable vanadium production[J]. Journal of Materials Research and Technology, 2021,12:343-364. doi: 10.1016/j.jmrt.2021.02.065
    [11] LIU S Y, WANG L J, HE X B, et al. Insight into the oxidation mechanisms of vanadium slag and its application in the separation of V and Cr[J]. Journal of Cleaner Production, 2023,405:136981. doi: 10.1016/j.jclepro.2023.136981
    [12] LI H Y, FANG H X, WANG K, et al. Asynchronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting–water leaching[J]. Hydrometallurgy, 2015,156:124-135. doi: 10.1016/j.hydromet.2015.06.003
    [13] FU Z B, JIANG L, LI M, et al. Simultaneous extraction of vanadium and chromium from canadium-chromium slag by sodium roasting[J]. Iron Steel Vanadium Titanium, 2020,41(4):1-6. (付自碧, 蒋霖, 李明, 等. 钒铬渣钠化焙烧同步提取钒和铬[J]. 钢铁钒钛, 2020,41(4):1-6.

    FU Z B, JIANG L, LI M, et al. Simultaneous extraction of vanadium and chromium from canadium-chromium slag by sodium roasting[J]. Iron Steel Vanadium Titanium, 2020, 41(4): 1-6.
    [14] WANG Y H, WANG Y F, LI Y T, et al. A review on vanadium extraction techniques from major vanadium-containing resources[J]. Rare Metals, 2024,43(9):4115-4131. doi: 10.1007/s12598-024-02721-w
    [15] WANG Z H, CHEN L, ALDAHRIB T, et al. Direct recovery of low valence vanadium from vanadium slag — Effect of roasting on vanadium leaching[J]. Hydrometallurgy, 2020,191:105156. doi: 10.1016/j.hydromet.2019.105156
    [16] WANG Z H, CHEN L, QIN Z F, et al. A green and efficient route for simultaneous recovery of low valence of vanadium and chromium, titanium and iron from vanadium slag[J]. Resources, Conservation and Recycling, 2022,178:106046. doi: 10.1016/j.resconrec.2021.106046
    [17] CHEN L, WANG Z H, ZHU Y M, et al. Innovative strategy for comprehensive utilization of vanadium slag: Maximizing valuable metals recovery and minimizing hazardous waste generation[J]. Process Safety and Environmental Protection, 2024,188:13-24. doi: 10.1016/j.psep.2024.05.064
    [18] WANG Z H, QIN Z F, CHEN L, et al. Recovery of low valence vanadium from vanadium slag for the preparation of VOSO4 electrolyte[J]. Process Safety and Environmental Protection, 2023,174:298-309. doi: 10.1016/j.psep.2023.03.040
    [19] WANG Z H, CHEN L, YIN R T, et al. Preparation of vanadyl sulfate electrolyte for vanadium flow battery from vanadium slag using calcium salt precipitation, sodium carbonate leaching and solvent extraction[J]. Hydrometallurgy, 2023,222:106146. doi: 10.1016/j.hydromet.2023.106146
    [20] WEN J, JIANG T, XU Y Z, et al. Efficient extraction and separation of vanadium and chromium in high chromium vanadium slag by sodium salt roasting-(NH4)2SO4 leaching[J]. Journal of Industrial and Engineering Chemistry, 2019,71:327-335. doi: 10.1016/j.jiec.2018.11.043
    [21] WEN J, JIANG T, ZHOU M, et al. Roasting and leaching behaviors of vanadium and chromium in calcification roasting–acid leaching of high-chromium vanadium slag[J]. International journal of minerals, metallurgy and materials, 2018,25(5):515-526. doi: 10.1007/s12613-018-1598-3
    [22] WEN J, JIANG T, WANG J P, et al. An efficient utilization of high chromium vanadium slag: extraction of vanadium based on manganese carbonate roasting and detoxification processing of chromium-containing tailings[J]. Journal of Hazardous Materials, 2019,378:120733. doi: 10.1016/j.jhazmat.2019.06.010
    [23] ZHANG G Q, ZHANG T A, LÜ G Z, et al. Extraction of vanadium from vanadium slag by high pressure oxidative acid leaching[J]. International Journal of Minerals, Metallurgy, and Materials, 2015,22(1):21-26. doi: 10.1007/s12613-015-1038-6
    [24] LI H Y, CHENG J, WANG C J, et al. Ecofriendly selective extraction of vanadium from vanadium slag with high chromium content via magnesiation roasting–Acid leaching[J]. Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2022,53(1):604-616. doi: 10.1007/s11663-021-02402-4
    [25] WANG X W, WANG M Y, FU Z B, et al. Present status and prospects of vanadium and chromium separation in vanadium extraction from vanadium-chromium slag[J]. Iron Steel Vanadium Titanium, 2017,38(6):1-5. (王学文, 王明玉, 付自碧, 等. 钒渣提钒工艺过程钒铬分离现状及展望[J]. 钢铁钒钛, 2017,38(6):1-5. doi: 10.7513/j.issn.1004-7638.2017.06.001

    WANG X W, WANG M Y, FU Z B, et al. Present status and prospects of vanadium and chromium separation in vanadium extraction from vanadium-chromium slag[J]. Iron Steel Vanadium Titanium, 2017, 38(6): 1-5. doi: 10.7513/j.issn.1004-7638.2017.06.001
    [26] LI X, WEI Y F, WU Y X, et al. A review on separation of vanadium and chromium in preparation of high-purity vanadium pentoxide[J]. Jiangxi Metallurgy, 2024,44(3):147-156. (李煊, 魏艳芳, 吴一玺, 等. 高纯五氧化二钒制备过程钒铬分离研究进展[J]. 江西冶金, 2024,44(3):147-156.

    LI X, WEI Y F, WU Y X, et al. A review on separation of vanadium and chromium in preparation of high-purity vanadium pentoxide[J]. Jiangxi Metallurgy, 2024, 44(3): 147-156.
    [27] WANG Z H, CHEN L, QIN Z F, et al. Tuning the nucleation rates for high-efficiency hydrolysis of sodium vanadate solution[J]. Industrial & engineering chemistry research, 2023,62(28):11128-11139.
    [28] WU Z X. Research status of preparation of vanadium pentoxide from vanadium containing solution[J]. Iron Steel Vanadium Titanium, 2023,44(2):9-19. (伍珍秀. 含钒溶液制备五氧化二钒的研究现状[J]. 钢铁钒钛, 2023,44(2):9-19. doi: 10.7513/j.issn.1004-7638.2023.02.002

    WU Z X. Research status of preparation of vanadium pentoxide from vanadium containing solution[J]. Iron Steel Vanadium Titanium, 2023, 44(2): 9-19. doi: 10.7513/j.issn.1004-7638.2023.02.002
    [29] ZHANG Y, PENG X F, FAN B Q, et al. Sustainable valuable metal recovery from the V–Cr–Fe ternary slime via leaching-selective complexation[J]. ACS Sustainable Chemistry & Engineering, 2020,8(2):958-965.
    [30] YIN R T, CHEN L, QIN Z F, et al. A novel complexation method for separation and recovery of low valence vanadium, iron and chromium from sulfuric acid solution[J]. Journal of cleaner production, 2022,373:133640. doi: 10.1016/j.jclepro.2022.133640
    [31] HONG H J, YOO H J, JEON J, et al. Differential adsorption of vanadium(Ⅴ) and tungsten(W) on ion exchange resins: A novel approach for separation and recovery of spent catalyst leachate[J]. Journal of cleaner production, 2023,426:139157. doi: 10.1016/j.jclepro.2023.139157
    [32] YANG X H, LI W, ZHU X B. Mechanism of adsorption of vanadium (Ⅳ) ions in acidic solution by D751 resin[J]. The Chinese Journal of Nonferrous Metals, 2022,32(12):3862-3870. (杨小慧, 李望, 朱晓波. D751螯合树脂吸附酸性溶液中钒(Ⅳ)离子的机制[J]. 中国有色金属学报, 2022,32(12):3862-3870.

    YANG X H, LI W, ZHU X B. Mechanism of adsorption of vanadium (Ⅳ) ions in acidic solution by D751 resin[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(12): 3862-3870.
    [33] FAN Y Y, WANG X W, WANG M Y. Separation and recovery of chromium and vanadium from vanadium-containing chromate solution by ion exchange[J]. Hydrometallurgy, 2013,136:31-35. doi: 10.1016/j.hydromet.2013.03.008
    [34] WU B Y, LIU C P, FU C Y, et al. Selective separation of Cr(Ⅵ) and V(Ⅴ) from solution by simple pH controlled two-step adsorption/desorption process with ZrO2[J]. Chemical Engineering Journal, 2019,373:1030-1041. doi: 10.1016/j.cej.2019.05.131
    [35] YUAN B, WU P, LIU C J, et al. Separation of high concentration V(Ⅴ) and Cr(Ⅵ) by amorphous hydrous zirconium oxide with high adsorption capacity and selectivity[J]. Separation and Purification Technology, 2025,354:128562. doi: 10.1016/j.seppur.2024.128562
    [36] LI X B, DENG Z G, WEI C, et al. Solvent extraction of vanadium from a stone coal acidic leach solution using D2EHPA/TBP: Continuous testing[J]. Hydrometallurgy, 2015,154:40-46. doi: 10.1016/j.hydromet.2014.11.008
    [37] ZHANG Y, ZHANG T A, LÜ G Z, et al. Separation between vanadium and iron in acid leaching solution of converter vanadium slag without calcination[J]. Journal of Northeastern University (Natural Science), 2015(10):1445-1448. (张莹, 张廷安, 吕国志, 等. 钒渣无焙烧浸出液中钒铁萃取分离[J]. 东北大学学报(自然科学版), 2015(10):1445-1448. doi: 10.3969/j.issn.1005-3026.2015.10.017

    ZHANG Y, ZHANG T A, LÜ G Z, et al. Separation between vanadium and iron in acid leaching solution of converter vanadium slag without calcination[J]. Journal of Northeastern University (Natural Science), 2015(10): 1445-1448. doi: 10.3969/j.issn.1005-3026.2015.10.017
    [38] DAN W J, XIAO L S, ZHANG G Q, et al. Selective separation of chromium(Ⅲ) and iron(Ⅱ) by extraction[J]. Nonferrous Metals Science and Engineering, 2017,8(3):35-41. (淡维杰, 肖连生, 张贵清, 等. 萃取法提取铬(Ⅲ)分离铁(Ⅱ)的研究[J]. 有色金属科学与工程, 2017,8(3):35-41.

    DAN W J, XIAO L S, ZHANG G Q, et al. Selective separation of chromium(Ⅲ) and iron(Ⅱ) by extraction[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 35-41.
    [39] SUN S X, GAO Z L, XI Z K, et al. Study on extraction of chromium with HEH[EHP][J]. Journal of Inorganic chemistry. 1987(1): 7-15. (孙思修, 高自立, 奚正楷, 等. HEH[EHP]萃取铬的研究[J]. 无机化学学报. 1987(1): 7-15.

    SUN S X, GAO Z L, XI Z K, et al. Study on extraction of chromium with HEH[EHP][J]. Journal of Inorganic chemistry. 1987(1): 7-15.
    [40] WANG Y C, LIU Y H, MENG F C, et al. Efficient separation of vanadium and chromium by the complexation with sulfate ions in solvent extraction using EHEHPA[J]. Separation and Purification Technology, 2025,354:129281. doi: 10.1016/j.seppur.2024.129281
    [41] THOMAS J, SURENDER G D, REDDY M L P. Solvent extraction separation of vanadium(Ⅴ) from multimetal chloride solutions using tributylphosphate[J]. Separation science and technology, 2003,38(15):3761-3774. doi: 10.1081/SS-120024228
    [42] REMYA P N, SAJI J, REDDY M L P. Solvent extraction and separation of vanadium (Ⅴ) from multivalent metal chloride solutions by cyanex 923[J]. Solvent extraction and ion exchange, 2003,21(4):573-589. doi: 10.1081/SEI-120022522
    [43] ZHAO L F, FEI D J, DANG Y G, et al. Studies on the extraction of chromium(Ⅲ) by emulsion liquid membrane[J]. Journal of Hazardous Materials, 2010,178(1-3):130-135. doi: 10.1016/j.jhazmat.2010.01.052
    [44] TAN X W, YANG Y Q, DUAN Z K, et al. Extraction of chromium(Ⅵ) by TBP in hydrochloric acid[J]. Chemical Industry and Engineering Progress, 2003(12):1323-1326. (谭雄文, 杨运泉, 段正康, 等. 盐酸介质中磷酸三丁酯萃取分离铬(Ⅵ)[J]. 化工进展, 2003(12):1323-1326. doi: 10.3321/j.issn:1000-6613.2003.12.016

    TAN X W, YANG Y Q, DUAN Z K, et al. Extraction of chromium(Ⅵ) by TBP in hydrochloric acid[J]. Chemical Industry and Engineering Progress, 2003(12): 1323-1326. doi: 10.3321/j.issn:1000-6613.2003.12.016
    [45] YU S Q, MENG X S, CHEN J Y. Extraction of pentavalent vanadium from aqueous solutions with primary amines[J]. Chinese Science (Series B. Chemistry, Biology, Agronomy, Medicine, Geology), 1982(1):11-18. (于淑秋, 孟祥胜, 陈家镛. 用伯胺从水溶液中萃取五价钒[J]. 中国科学(B辑 化学 生物学 农学 医学 地学), 1982(1):11-18.

    YU S Q, MENG X S, CHEN J Y. Extraction of pentavalent vanadium from aqueous solutions with primary amines[J]. Chinese Science (Series B. Chemistry, Biology, Agronomy, Medicine, Geology), 1982(1): 11-18.
    [46] NING P G, CAO H B, LIU C M, et al. Characterization and prevention of interfacial crud produced during the extraction of vanadium and chromium by primary amine[J]. Hydrometallurgy, 2009,97(1-2):131-136. doi: 10.1016/j.hydromet.2009.01.007
    [47] SUN P, HUANG K, LIU H Z. Separation of V and Cr in alkaline aqueous solution using acidified primary amine N1923[J]. Hydrometallurgy, 2016,165:370-380. doi: 10.1016/j.hydromet.2015.10.026
    [48] QIN Z F, ZHANG G Q, XIONG Y J, et al. Recovery of vanadium from leach solutions of vanadium slag using solvent extraction with N235[J]. Hydrometallurgy, 2020,192:105259. doi: 10.1016/j.hydromet.2020.105259
    [49] HU B, ZHANG C D, DAI Y Y, et al. Separation of vanadium and chromium in solution after vanadium precipitation by co-extraction with N263 and selective stripping with NaOH solution[J]. Hydrometallurgy, 2022,208:105798. doi: 10.1016/j.hydromet.2021.105798
    [50] SUN P, HUANG K, WANG X Q, et al. Three-liquid-phase extraction and separation of V(Ⅴ) and Cr(Ⅵ) from acidic leach solutions of high-chromium vanadium–titanium magnetite[J]. Chinese Journal of Chemical Engineering, 2018,26(7):1451-1457. doi: 10.1016/j.cjche.2018.01.023
    [51] ZHAO J M, HU Q Y, LI Y B, et al. Efficient separation of vanadium from chromium by a novel ionic liquid-based synergistic extraction strategy[J]. Chemical Engineering Journal 2015, 264: 487-496.
    [52] NING P G, LIN X, CAO H B, et al. Selective extraction and deep separation of V(Ⅴ) and Cr(Ⅵ) in the leaching solution of chromium-bearing vanadium slag with primary amine LK-N21[J]. Separation and Purification Technology, 2014,137:109-115. doi: 10.1016/j.seppur.2014.08.033
    [53] HU G P, CHEN D S, WANG L, et al. Extraction of vanadium from chloride solution with high concentration of iron by solvent extraction using D2EHPA[J]. Separation and Purification Technology, 2014,125:59-65. doi: 10.1016/j.seppur.2014.01.031
    [54] YING Z W, HUO M X, WU G X, et al. Recovery of vanadium and chromium from leaching solution of sodium roasting vanadium slag by stepwise separation using amide and EHEHPA[J]. Separation and Purification Technology, 2021,269:118741. doi: 10.1016/j.seppur.2021.118741
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  46
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-03
  • 刊出日期:  2025-02-27

目录

    /

    返回文章
    返回