中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锌铝系盐处理剂对钛白表面性质的影响研究

尚雨婷 刘婵 路瑞芳 杨芳 冯玉军 殷鸿尧

尚雨婷, 刘婵, 路瑞芳, 杨芳, 冯玉军, 殷鸿尧. 锌铝系盐处理剂对钛白表面性质的影响研究[J]. 钢铁钒钛, 2025, 46(1): 34-39. doi: 10.7513/j.issn.1004-7638.2025.01.005
引用本文: 尚雨婷, 刘婵, 路瑞芳, 杨芳, 冯玉军, 殷鸿尧. 锌铝系盐处理剂对钛白表面性质的影响研究[J]. 钢铁钒钛, 2025, 46(1): 34-39. doi: 10.7513/j.issn.1004-7638.2025.01.005
SHANG Yuting, LIU Chan, LU Ruifang, YANG Fang, FENG Yujun, YIN Hongyao. Study on the effect of zinc or aluminium salt treatments on the surface properties of TiO2[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 34-39. doi: 10.7513/j.issn.1004-7638.2025.01.005
Citation: SHANG Yuting, LIU Chan, LU Ruifang, YANG Fang, FENG Yujun, YIN Hongyao. Study on the effect of zinc or aluminium salt treatments on the surface properties of TiO2[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 34-39. doi: 10.7513/j.issn.1004-7638.2025.01.005

锌铝系盐处理剂对钛白表面性质的影响研究

doi: 10.7513/j.issn.1004-7638.2025.01.005
详细信息
    作者简介:

    尚雨婷,1996年出生,河南周口人,女,硕士,主要研究方向为纳米二氧化钛及高性能与功能高分子材料,E-mail:ytshang@hotmail.com

    通讯作者:

    殷鸿尧,1986年出生,四川成都人,男,副研究员,博士生导师,研究方向为功能高分子材料及表界面化学,E-mail:hyyin@scu.edu.cn

  • 中图分类号: TF044,TF823

Study on the effect of zinc or aluminium salt treatments on the surface properties of TiO2

  • 摘要: 硫酸法钛白生产工艺中,盐处理剂的选择对金红石二氧化钛晶体的表面性质有着重大影响,有必要对不同盐处理剂造成的钛白粉表面性质差异进行深入研究,揭示不同盐处理剂所引发的表面性质差异。采用SEM、XPS、BET等仪器分别研究了锌系盐处理和铝系盐处理的金红石样品的表面形貌、晶体表面缺陷、表面羟基的差异。结果表明:铝系盐处理的金红石样品呈现长条形,在沉降过程中受更大的沉降阻力,且铝系盐处理金红石样品表面存在更多的晶体缺陷、表面羟基,同时对水分子的解离作用更明显,在水分散体系有更高的表面电位,更容易形成更稳定的分散体系。
  • 图  1  (a)锌系金红石TiO2样品SEM形貌;(b)铝系金红石TiO2样品SEM形貌;(c)锌系样品径长比分布;(d)铝系样品径长比分布。

    Figure  1.  SEM image of zinc-based rutile TiO2 sample (a), SEM image of aluminium-based rutile TiO2 sample (b), diameter-to-length ratio distribution of zinc-based sample (c) and diameter-to-length ratio distribution of aluminium-based sample(d)

    图  2  金红石TiO2纳米颗粒的Ti 2p XPS分析

    (a)锌系-1#样品;(b)锌系-2#样品;(c)铝系-3#样品;(d)铝系-4#样品

    Figure  2.  Ti 2p XPS analysis of rutile TiO2 nanoparticles

    图  3  金红石TiO2纳米颗粒的O 1s XPS分析

    (a)锌系-1#样品;(b)锌系-2#样品;(c)铝系-3#样品;(d)铝系-4#样品。

    Figure  3.  O 1s XPS analysis of rutile TiO2 nanoparticles

    表  1  主要试验仪器

    Table  1.   Primary test instruments

    仪器 型号 厂家
    三头研磨机 RK/XPM-Ø120×3 武汉洛克粉磨设备
    制造有限公司
    扫描电子显微镜 Gemini SEM 300 德国ZEISS
    X射线光电子能谱仪 K-Alpha 美国Thermo Scientific
    热重分析仪 TG 209 F1 德国Netzsch
    全自动比表面及
    孔隙度分析仪
    ASAP 2460 美国Micromeritics
    Zeta电位分析仪 Zetasizer Nano ZS90 Malvern
    下载: 导出CSV

    表  2  TiO2 NPs上的Ti化学种类定量分析

    Table  2.   Quantitative analysis of Ti chemical species on TiO2 NPs %

    TiO2 NPs 锌系-1# 锌系-2# 铝系-3# 铝系-4#
    Ti4+ 91.63 89.63 86.75 86.68
    Ti3+ 8.57 10.37 13.25 13.32
    下载: 导出CSV

    表  3  TiO2 NPs上的O化学种类定量分析

    Table  3.   Quantitative analysis of O chemical species on TiO2 NPs %

    类别 锌系-1# 锌系-2# 铝系-3# 铝系-4#
    Ti-O 78.97 70.84 65.33 68.11
    Ti-OHb 14.76 22.51 26.74 20.85
    Ti-OHt 6.26 6.65 7.92 11.04
    下载: 导出CSV

    表  4  Zn/Al掺杂金红石TiO2相对表面羟基密度测定结果

    Table  4.   Relative surface hydroxyl density measurements of Zn/Al doped rutile TiO2

    样品热失重/%BET测试结果/(m²·g−1)NOH /nm2
    锌系-1#0.1526.123516.6
    锌系-2#0.2376.048926.2
    铝系-3#0.2685.584032.1
    铝系-4#0.2965.789534.25
    下载: 导出CSV

    表  5  Zn/Al掺杂金红石TiO2水分散液Zeta电位测定结果

    Table  5.   Zeta potential measurement results of Zn/Al doped rutile TiO2 aqueous dispersions

    样品Zeta电位/mV
    10%锌系-1#−24.7
    10%锌系-2#−28.2
    10%铝系-3#−39.2
    10%铝系-4#−42.3
    下载: 导出CSV
  • [1] LIU C, LU R F, WU J C, et al. Comparative study on the evolution law of zinc salt and aluminum salt treated titanium dioxide particles during calcination[J]. Iron Steel Vanadium Titanium, 2023,44(2):34-39. (刘婵, 路瑞芳, 吴健春, 等. 煅烧过程中锌系与铝系钛白粒子演变规律的对比研究[J]. 钢铁钒钛, 2023,44(2):34-39.

    LIU C, LU R F, WU J C, et al. Comparative study on the evolution law of zinc salt and aluminum salt treated titanium dioxide particles during calcination[J]. Iron Steel Vanadium Titanium, 2023, 44(2): 34-39.
    [2] WU J C, LU R F, MA W P. Analysis of difference between zinc salt and aluminum salt treated titanium dioxide[J]. Iron Steel Vanadium Titanium, 2020,41(2):29-32. (吴健春, 路瑞芳, 马维平. 锌系与铝系盐处理钛白差异分析[J]. 钢铁钒钛, 2020,41(2):29-32.

    WU J C, LU R F, MA W P. Analysis of difference between zinc salt and aluminum salt treated titanium dioxide[J]. Iron Steel Vanadium Titanium, 2020, 41(2): 29-32.
    [3] LU R F, SUN Q, YANG F, et al. Study on effect of Al-Zn composite salt treatment on the quality of rutile TiO2[J]. Iron Steel Vanadium Titanium, 2022,43(3):14-19. (路瑞芳, 孙蔷, 杨芳, 等. 铝锌复合盐处理对金红石型TiO2质量的影响研究[J]. 钢铁钒钛, 2022,43(3):14-19.

    LU R F, SUN Q, YANG F, et al. Study on effect of Al-Zn composite salt treatment on the quality of rutile TiO2[J]. Iron Steel Vanadium Titanium, 2022, 43(3): 14-19.
    [4] CAO L, GAN W J, KE L H, et al. Effect of Al-doping solid phase method on growth of titanium dioxide crystal[J]. Coating and protection, 2021,42(4):44-47,62. (曹磊, 淦文军, 柯良辉, 等. Al掺杂对固相法制备TiO2晶体生长影响的研究[J]. 涂料技术与文摘, 2021,42(4):44-47,62.

    CAO L, GAN W J, KE L H, et al. Effect of Al-doping solid phase method on growth of titanium dioxide crystal[J]. Coating and protection, 2021, 42(4): 44-47,62.
    [5] RONG E Y, ZHU J W, CHEN K, et al. Effects of calcining seed, phosphate, and magnesium on titanium dioxide crystal[J]. Inorganic Chemicals Industry, 2016,48(7):21-24. (容尔益, 朱家文, 陈葵, 等. 煅烧晶种和磷、镁对二氧化钛晶体的影响[J]. 无机盐工业, 2016,48(7):21-24.

    RONG E Y, ZHU J W, CHEN K, et al. Effects of calcining seed, phosphate, and magnesium on titanium dioxide crystal[J]. Inorganic Chemicals Industry, 2016, 48(7): 21-24.
    [6] MA W P, SUN K, WANG H B. Effect of potassium hydroxide on preparation of rutile TiO2[J]. Iron Steel Vanadium Titanium, 2023,44(1):26-31. (马维平, 孙科, 王海波. 氢氧化钾对制备金红石型TiO2作用研究[J]. 钢铁钒钛, 2023,44(1):26-31.

    MA W P, SUN K, WANG H B. Effect of potassium hydroxide on preparation of rutile TiO2[J]. Iron Steel Vanadium Titanium, 2023, 44(1): 26-31.
    [7] SHIBUYA T, YASUOKA K, MIRBT S, et al. Bipolaron formation induced by oxygen vacancy at rutile TiO2(110) surfaces[J]. Jphyschemc, 2012,118(18):9429-9435.
    [8] LU R F, YANG F, LIU C, et al. Study on the effect and mechanism of Al3+ during the calcination of metatitanic acid[J]. Iron Steel Vanadium Titanium, 2023,44(4):25-32. (路瑞芳, 杨芳, 刘婵, 等. Al3+对偏钛酸煅烧过程的影响和作用机制研究[J]. 钢铁钒钛, 2023,44(4):25-32.

    LU R F, YANG F, LIU C, et al. Study on the effect and mechanism of Al3+ during the calcination of metatitanic acid[J]. Iron Steel Vanadium Titanium, 2023, 44(4): 25-32.
    [9] HAO Y Q, WANG Y F, WENG Y X. Particle-size-dependent hydrophilicity of TiO2 nanoparticles characterized by marcus reorganization energy of interfacial charge recombination[J]. The Journal of Physical Chemistry C, 2008,112(24):8995-9000. doi: 10.1021/jp802532w
    [10] TANG B W, NIU S, SUN C, et al. The superhydrophilicity and photocatalytic property of Zn-doped TiO2 thin films[J]. Ferroelectrics, 2019,549(1):96-103. doi: 10.1080/00150193.2019.1592548
    [11] Wu C Y, Tu K J, DENG J P, et al. Markedly enhanced surface hydroxyl groups of TiO2 nanoparticles with superior water-dispersibility for photocatalysis[J]. Materials, 2017,10(5):566. doi: 10.3390/ma10050566
    [12] HAO L P, CHAI S G, ZENG Y D, et al. A new method for accurate determination of OH groups density on silica surface[J]. Guangzhou Chemical Industry, 2019,47(4):93-94,121. (郝良鹏, 柴颂刚, 曾耀德, 等. 一种精确测定二氧化硅表面羟基数量的新方法[J]. 广州化工, 2019,47(4):93-94,121.

    HAO L P, CHAI S G, ZENG Y D, et al. A new method for accurate determination of OH groups density on silica surface[J]. Guangzhou Chemical Industry, 2019, 47(4): 93-94,121.
    [13] MUELLER R, KAMMLER H K, WEGNER K, et al. OH surface density of SiO2 and TiO2 by thermogravimetric analysis[J]. Langmuir, 2003,19(1):160-165. doi: 10.1021/la025785w
    [14] CHEN Y, ZHOU Y, LI Y J, et al. Zeta Potential measurement of high concentration nano-silica slurry[J]. PTCA (PART A : PHYS. TEST), 2020, 56(11): 19-24, 34. (陈鹰, 周莹, 厉艳君, 等. 高浓度纳米二氧化硅浆料Zeta电位的测量[J]. 理化检验(物理分册), 2020, 56(11): 19-24, 34.

    CHEN Y, ZHOU Y, LI Y J, et al. Zeta Potential measurement of high concentration nano-silica slurry[J]. PTCA (PART A : PHYS. TEST), 2020, 56(11): 19-24, 34.
    [15] GESENHUES U, RENTSCHLER T. Crystal growth and defect structure of Al3+-doped rutile[J]. International Journal of Quantum Chemistry, 1999,143(2):210-218.
    [16] LIU G, ZHANG X, XU Y, et al. The preparation of Zn2+-doped TiO2 nanoparticles by sol-gel and solid phase reaction methods respectively and their photocatalytic activities[J]. Chemosphere, 2005,59(9):1367-1371. doi: 10.1016/j.chemosphere.2004.11.072
    [17] DING Y, ZHANG X, CHEN L, et al. Oxygen vacancies enabled enhancement of catalytic property of Al reduced anatase TiO2 in the decomposition of high concentration ozone[J]. Journal of Solid State Chemistry France, 2017(250):121-127.
    [18] KIEJNA A. Vacancy formation and O adsorption at the Al(111) surface - art. no. 235405[J]. Physical review, B Condensed matter and materials physics, 2003,68(23):235405.
    [19] WANG S G, WEN X D, CAO D B, et al. Formation of oxygen vacancies on the TiO2(110) surfaces[J]. Surface Science, 2005,577(1):69-76. doi: 10.1016/j.susc.2004.12.017
    [20] MINATO T, KAWAI M, KIM Y. Creation of single oxygen vacancy on titanium dioxide surface[J]. Journal of Materials Research, 2012,27(17):2237-2240. doi: 10.1557/jmr.2012.157
    [21] MATSUNAGA K, TANAKA Y, TOYOURA K, et al. Existence of basal oxygen vacancies on the rutile TiO2(110) surface[J]. Physical Review B, 2014,90(19):195303. doi: 10.1103/PhysRevB.90.195303
    [22] VALENTIN C D, PACCHIONI G, SELLONI A. Electronic structure of defect states in hydroxylated and reduced rutile TiO2(110) surfaces[J]. Physical Review Letters, 2006,97(16):166803. doi: 10.1103/PhysRevLett.97.166803
    [23] ZHAO L, MAGYARI-KÖPE B, NISHI Y. Polaronic interactions between oxygen vacancies in rutile TiO2[J]. Physical Review B, 2017,95(5):54104. doi: 10.1103/PhysRevB.95.054104
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  20
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-23
  • 刊出日期:  2025-02-27

目录

    /

    返回文章
    返回