Study on the effect of zinc or aluminium salt treatments on the surface properties of TiO2
-
摘要: 硫酸法钛白生产工艺中,盐处理剂的选择对金红石二氧化钛晶体的表面性质有着重大影响,有必要对不同盐处理剂造成的钛白粉表面性质差异进行深入研究,揭示不同盐处理剂所引发的表面性质差异。采用SEM、XPS、BET等仪器分别研究了锌系盐处理和铝系盐处理的金红石样品的表面形貌、晶体表面缺陷、表面羟基的差异。结果表明:铝系盐处理的金红石样品呈现长条形,在沉降过程中受更大的沉降阻力,且铝系盐处理金红石样品表面存在更多的晶体缺陷、表面羟基,同时对水分子的解离作用更明显,在水分散体系有更高的表面电位,更容易形成更稳定的分散体系。Abstract: In the production process of titanium dioxide by sulfuric acid method, the selection of salt treatment agents has a significant impact on the surface properties of rutile titanium dioxide crystals. Thus it is necessary to carry out an in-depth study to reveal the differences in the surface properties of titanium dioxide caused by different salt treating agents. In this study, the differences in surface morphology, crystal surface defects, and surface hydroxyl groups of rutile samples treated with zinc-based salt and aluminium-based salt were investigated using SEM, XPS, and BET instruments, respectively. The results show that the aluminium salt-treated rutile samples present elongated shape and suffer from greater sedimentation resistance during the sedimentation process. Meanwhile, the aluminium salt-treated rutile samples have more crystal defects and surface hydroxyls on the surface than the zinc salt-treated samples, and also have more pronounced dissociative effects on water molecules, higher surface potential in the water-dispersed system, and are more capable of forming more stable dispersed systems.
-
图 1 (a)锌系金红石TiO2样品SEM形貌;(b)铝系金红石TiO2样品SEM形貌;(c)锌系样品径长比分布;(d)铝系样品径长比分布。
Figure 1. SEM image of zinc-based rutile TiO2 sample (a), SEM image of aluminium-based rutile TiO2 sample (b), diameter-to-length ratio distribution of zinc-based sample (c) and diameter-to-length ratio distribution of aluminium-based sample(d)
表 1 主要试验仪器
Table 1. Primary test instruments
仪器 型号 厂家 三头研磨机 RK/XPM-Ø120×3 武汉洛克粉磨设备
制造有限公司扫描电子显微镜 Gemini SEM 300 德国ZEISS X射线光电子能谱仪 K-Alpha 美国Thermo Scientific 热重分析仪 TG 209 F1 德国Netzsch 全自动比表面及
孔隙度分析仪ASAP 2460 美国Micromeritics Zeta电位分析仪 Zetasizer Nano ZS90 Malvern 表 2 TiO2 NPs上的Ti化学种类定量分析
Table 2. Quantitative analysis of Ti chemical species on TiO2 NPs
% TiO2 NPs 锌系-1# 锌系-2# 铝系-3# 铝系-4# Ti4+ 91.63 89.63 86.75 86.68 Ti3+ 8.57 10.37 13.25 13.32 表 3 TiO2 NPs上的O化学种类定量分析
Table 3. Quantitative analysis of O chemical species on TiO2 NPs
% 类别 锌系-1# 锌系-2# 铝系-3# 铝系-4# Ti-O 78.97 70.84 65.33 68.11 Ti-OHb 14.76 22.51 26.74 20.85 Ti-OHt 6.26 6.65 7.92 11.04 表 4 Zn/Al掺杂金红石TiO2相对表面羟基密度测定结果
Table 4. Relative surface hydroxyl density measurements of Zn/Al doped rutile TiO2
样品 热失重/% BET测试结果/(m²·g−1) NOH /nm2 锌系-1# 0.152 6.1235 16.6 锌系-2# 0.237 6.0489 26.2 铝系-3# 0.268 5.5840 32.1 铝系-4# 0.296 5.7895 34.25 表 5 Zn/Al掺杂金红石TiO2水分散液Zeta电位测定结果
Table 5. Zeta potential measurement results of Zn/Al doped rutile TiO2 aqueous dispersions
样品 Zeta电位/mV 10%锌系-1# −24.7 10%锌系-2# −28.2 10%铝系-3# −39.2 10%铝系-4# −42.3 -
[1] LIU C, LU R F, WU J C, et al. Comparative study on the evolution law of zinc salt and aluminum salt treated titanium dioxide particles during calcination[J]. Iron Steel Vanadium Titanium, 2023,44(2):34-39. (刘婵, 路瑞芳, 吴健春, 等. 煅烧过程中锌系与铝系钛白粒子演变规律的对比研究[J]. 钢铁钒钛, 2023,44(2):34-39.LIU C, LU R F, WU J C, et al. Comparative study on the evolution law of zinc salt and aluminum salt treated titanium dioxide particles during calcination[J]. Iron Steel Vanadium Titanium, 2023, 44(2): 34-39. [2] WU J C, LU R F, MA W P. Analysis of difference between zinc salt and aluminum salt treated titanium dioxide[J]. Iron Steel Vanadium Titanium, 2020,41(2):29-32. (吴健春, 路瑞芳, 马维平. 锌系与铝系盐处理钛白差异分析[J]. 钢铁钒钛, 2020,41(2):29-32.WU J C, LU R F, MA W P. Analysis of difference between zinc salt and aluminum salt treated titanium dioxide[J]. Iron Steel Vanadium Titanium, 2020, 41(2): 29-32. [3] LU R F, SUN Q, YANG F, et al. Study on effect of Al-Zn composite salt treatment on the quality of rutile TiO2[J]. Iron Steel Vanadium Titanium, 2022,43(3):14-19. (路瑞芳, 孙蔷, 杨芳, 等. 铝锌复合盐处理对金红石型TiO2质量的影响研究[J]. 钢铁钒钛, 2022,43(3):14-19.LU R F, SUN Q, YANG F, et al. Study on effect of Al-Zn composite salt treatment on the quality of rutile TiO2[J]. Iron Steel Vanadium Titanium, 2022, 43(3): 14-19. [4] CAO L, GAN W J, KE L H, et al. Effect of Al-doping solid phase method on growth of titanium dioxide crystal[J]. Coating and protection, 2021,42(4):44-47,62. (曹磊, 淦文军, 柯良辉, 等. Al掺杂对固相法制备TiO2晶体生长影响的研究[J]. 涂料技术与文摘, 2021,42(4):44-47,62.CAO L, GAN W J, KE L H, et al. Effect of Al-doping solid phase method on growth of titanium dioxide crystal[J]. Coating and protection, 2021, 42(4): 44-47,62. [5] RONG E Y, ZHU J W, CHEN K, et al. Effects of calcining seed, phosphate, and magnesium on titanium dioxide crystal[J]. Inorganic Chemicals Industry, 2016,48(7):21-24. (容尔益, 朱家文, 陈葵, 等. 煅烧晶种和磷、镁对二氧化钛晶体的影响[J]. 无机盐工业, 2016,48(7):21-24.RONG E Y, ZHU J W, CHEN K, et al. Effects of calcining seed, phosphate, and magnesium on titanium dioxide crystal[J]. Inorganic Chemicals Industry, 2016, 48(7): 21-24. [6] MA W P, SUN K, WANG H B. Effect of potassium hydroxide on preparation of rutile TiO2[J]. Iron Steel Vanadium Titanium, 2023,44(1):26-31. (马维平, 孙科, 王海波. 氢氧化钾对制备金红石型TiO2作用研究[J]. 钢铁钒钛, 2023,44(1):26-31.MA W P, SUN K, WANG H B. Effect of potassium hydroxide on preparation of rutile TiO2[J]. Iron Steel Vanadium Titanium, 2023, 44(1): 26-31. [7] SHIBUYA T, YASUOKA K, MIRBT S, et al. Bipolaron formation induced by oxygen vacancy at rutile TiO2(110) surfaces[J]. Jphyschemc, 2012,118(18):9429-9435. [8] LU R F, YANG F, LIU C, et al. Study on the effect and mechanism of Al3+ during the calcination of metatitanic acid[J]. Iron Steel Vanadium Titanium, 2023,44(4):25-32. (路瑞芳, 杨芳, 刘婵, 等. Al3+对偏钛酸煅烧过程的影响和作用机制研究[J]. 钢铁钒钛, 2023,44(4):25-32.LU R F, YANG F, LIU C, et al. Study on the effect and mechanism of Al3+ during the calcination of metatitanic acid[J]. Iron Steel Vanadium Titanium, 2023, 44(4): 25-32. [9] HAO Y Q, WANG Y F, WENG Y X. Particle-size-dependent hydrophilicity of TiO2 nanoparticles characterized by marcus reorganization energy of interfacial charge recombination[J]. The Journal of Physical Chemistry C, 2008,112(24):8995-9000. doi: 10.1021/jp802532w [10] TANG B W, NIU S, SUN C, et al. The superhydrophilicity and photocatalytic property of Zn-doped TiO2 thin films[J]. Ferroelectrics, 2019,549(1):96-103. doi: 10.1080/00150193.2019.1592548 [11] Wu C Y, Tu K J, DENG J P, et al. Markedly enhanced surface hydroxyl groups of TiO2 nanoparticles with superior water-dispersibility for photocatalysis[J]. Materials, 2017,10(5):566. doi: 10.3390/ma10050566 [12] HAO L P, CHAI S G, ZENG Y D, et al. A new method for accurate determination of OH groups density on silica surface[J]. Guangzhou Chemical Industry, 2019,47(4):93-94,121. (郝良鹏, 柴颂刚, 曾耀德, 等. 一种精确测定二氧化硅表面羟基数量的新方法[J]. 广州化工, 2019,47(4):93-94,121.HAO L P, CHAI S G, ZENG Y D, et al. A new method for accurate determination of OH groups density on silica surface[J]. Guangzhou Chemical Industry, 2019, 47(4): 93-94,121. [13] MUELLER R, KAMMLER H K, WEGNER K, et al. OH surface density of SiO2 and TiO2 by thermogravimetric analysis[J]. Langmuir, 2003,19(1):160-165. doi: 10.1021/la025785w [14] CHEN Y, ZHOU Y, LI Y J, et al. Zeta Potential measurement of high concentration nano-silica slurry[J]. PTCA (PART A : PHYS. TEST), 2020, 56(11): 19-24, 34. (陈鹰, 周莹, 厉艳君, 等. 高浓度纳米二氧化硅浆料Zeta电位的测量[J]. 理化检验(物理分册), 2020, 56(11): 19-24, 34.CHEN Y, ZHOU Y, LI Y J, et al. Zeta Potential measurement of high concentration nano-silica slurry[J]. PTCA (PART A : PHYS. TEST), 2020, 56(11): 19-24, 34. [15] GESENHUES U, RENTSCHLER T. Crystal growth and defect structure of Al3+-doped rutile[J]. International Journal of Quantum Chemistry, 1999,143(2):210-218. [16] LIU G, ZHANG X, XU Y, et al. The preparation of Zn2+-doped TiO2 nanoparticles by sol-gel and solid phase reaction methods respectively and their photocatalytic activities[J]. Chemosphere, 2005,59(9):1367-1371. doi: 10.1016/j.chemosphere.2004.11.072 [17] DING Y, ZHANG X, CHEN L, et al. Oxygen vacancies enabled enhancement of catalytic property of Al reduced anatase TiO2 in the decomposition of high concentration ozone[J]. Journal of Solid State Chemistry France, 2017(250):121-127. [18] KIEJNA A. Vacancy formation and O adsorption at the Al(111) surface - art. no. 235405[J]. Physical review, B Condensed matter and materials physics, 2003,68(23):235405. [19] WANG S G, WEN X D, CAO D B, et al. Formation of oxygen vacancies on the TiO2(110) surfaces[J]. Surface Science, 2005,577(1):69-76. doi: 10.1016/j.susc.2004.12.017 [20] MINATO T, KAWAI M, KIM Y. Creation of single oxygen vacancy on titanium dioxide surface[J]. Journal of Materials Research, 2012,27(17):2237-2240. doi: 10.1557/jmr.2012.157 [21] MATSUNAGA K, TANAKA Y, TOYOURA K, et al. Existence of basal oxygen vacancies on the rutile TiO2(110) surface[J]. Physical Review B, 2014,90(19):195303. doi: 10.1103/PhysRevB.90.195303 [22] VALENTIN C D, PACCHIONI G, SELLONI A. Electronic structure of defect states in hydroxylated and reduced rutile TiO2(110) surfaces[J]. Physical Review Letters, 2006,97(16):166803. doi: 10.1103/PhysRevLett.97.166803 [23] ZHAO L, MAGYARI-KÖPE B, NISHI Y. Polaronic interactions between oxygen vacancies in rutile TiO2[J]. Physical Review B, 2017,95(5):54104. doi: 10.1103/PhysRevB.95.054104 -