The investigation of Ru alloying on the electrochemical behaviour of pure Ti
-
摘要: 研究了不同Ru含量合金化对纯Ti微观组织结构和电化学行为的影响,以改善钛双极板在质子交换膜水电解环境中的耐蚀性和电导率。结果表明,随着Ru含量的增加, α-Ti 等轴晶细化,耐蚀性提高。韦伯阻抗出现在开路电位下阻抗谱的低频区域。当Ru含量低于0.08%时,0.8 V vs Ref极化6 h的钝化膜表现出p型半导体行为,电导率保持恒定。Abstract: The effect of pure Ti alloyed with different Ru content on the microstructure and electrochemical behaviour was studied for the need of further improvement in corrosion resistance and conductivity of titanium bipolar plates in proton exchange membrane water electrolysis environments. Results indicated that the α-Ti equiaxed grains were refined, the corrosion resistance was improved with the increase of Ru content. The Warburg impedance appeared in the low frequency region of impedance spectroscopy obtained at OCP. When the Ru content is below 0.08%, the passivation film formed by polarizing at 0.8 V vs Ref for 6 h exhibits p-type semiconductor behavior, and the conductivity remains constant.
-
Key words:
- Bipolar plates /
- titanium /
- ruthenium /
- microstructure /
- corrosion resistance
-
表 1 不同含量的Ru合金化纯Ti的Ecorr和Icorr
Table 1. The Ecorr and Icorr of Ti alloyed with different Ru contents
试样 Ecorr/V Icorr×105/(A·cm−2) Ti −0.646 5.14 Ti−0.02Ru −0.557 3.97 Ti−0.04Ru −0.518 2.86 Ti−0.08Ru −0.485 0.122 表 2 图3阻抗谱的等效电路参数
Table 2. Equivalent circuit parameters for impedance spectra in Fig. 3
试样 Rs /(Ω·cm2) Rct /(Ω·cm2) Qdl ×104/
(Ω−1·cm2·sn)ndl W× 103/
(Ω−1·cm2·s0.5)χ2 ×10−4 Ti 2.10 634.90 3.35 0.90 9.77 6.12 Ti-0.02Ru 5.15 695.50 2.89 0.92 11.62 5.45 Ti-0.04Ru 2.76 740.50 3.90 0.89 13.4 12.7 Ti-0.08Ru 3.77 793.00 5.01 0.93 14.8 5.21 表 3 图5阻抗谱的等效电路参数
Table 3. Equivalent circuit parameters for impedance spectra in Fig. 5
试样 Rs/
(Ω·cm2)Rct /
(Ω·cm2)Rc ×104 /
(Ω·cm2)Qdl ×104/
(Ω−1·cm2·sn)ndl Qc ×105/
(Ω−1·cm2·sn)nc χ2×10−4 Ti 2.97 74.32 9.13 4.52 0.96 6.66 0.93 11.15 Ti-0.02Ru 2.31 105.90 23.45 6.22 0.86 6.10 0.96 10.01 Ti-0.04Ru 2.32 48.92 46.66 11.32 0.94 6.02 0.94 3.96 Ti-0.08Ru 1.83 10.75 53.95 6.68 0.90 4.46 0.95 4.99 -
[1] WOODS P H, AGUEY K. The hydrogen economy-where is the water?[J]. Energy Nexus, 2022,7:100123. doi: 10.1016/j.nexus.2022.100123 [2] CARMO M, FRITZ D, MERGEL J A, STOLTEN, D A comprehensive review on PEM water electrolysis[J]. International Journal of Hydrogen Energy, 2013, 38: 4901-4934. [3] AYERS K E, CAPUANO C, ANDERSON E B. Recent advances in cell cost and efficiency for PEM-Based water electrolysis[J]. ECS Trans, 2012,41:15-22. [4] ROJAS N, SÁNCHEZ M M, SEVILLA G, et al. Coated stainless steels evaluation for bipolar plates in PEM water electrolysis conditions[J]. International Journal of Hydrogen Energy, 2021,46:25929-25943. doi: 10.1016/j.ijhydene.2021.03.100 [5] SHIRVANIAN P, VAN B F. Novel components in Proton Exchange Membrane (PEM) Water Electrolyzers (PEMWE): Status, challenges and future needs. A mini review[J]. Electrochemistry communications, 2020,114:106704. doi: 10.1016/j.elecom.2020.106704 [6] KONG D, FENG Y. Electrochemical anodic dissolution kinetics of titanium in fluoride-containing perchloric acid solutions at open-circuit potentials[J]. Journal of the Electrochemical Society, 2009,156:C283. doi: 10.1149/1.3153148 [7] WANG Z B, HU H X, ZHENG Y G, et al. Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid[J]. Corrosion Science, 2016,103:50-65. doi: 10.1016/j.corsci.2015.11.003 [8] SHAN D F, SHEN G X, PENG S L, et al. Preparation of carbon-doped titanium nitride corrosion-resistant coating on surface of titanium bipolar plates[J]. Rare Metals and Cemented Carbides, 2023,51(1):86-91. (单东方, 申桂鑫, 彭善龙, 等. 钛双极板表面碳掺杂氮化钛耐腐蚀涂层制备[J]. 稀有金属与硬质合金, 2023,51(1):86-91.SHAN D F, SHEN G X, PENG S L, et al. Preparation of carbon-doped titanium nitride corrosion-resistant coating on surface of titanium bipolar plates[J]. Rare Metals and Cemented Carbides, 2023, 51(1): 86-91. [9] POTGIETER J H. Alloys cathodically modified with noble metals[J]. Journal of Applied Electrochemistry, 1991,21:471-482. doi: 10.1007/BF01018598 [10] GAO Y L, GUO C P, LI C R, et al. Thermodynamic modeling of the Ru-Ti system[J]. Journal of Alloys and Compounds, 2009,479:148. doi: 10.1016/j.jallcom.2008.12.059 [11] ZHAO Y S, YANG Z, CHEN R Z, et al. Effect of Ru on microstructure evolution of the fourth generation nickle-based single crystal superalloy DD22 during long term aging[J]. Journal of Materials and Engineering, 2022, 50(9): 127-136. (赵云松, 杨昭, 陈瑞志, 等. Ru对第四代镍基单晶高温合金DD22长期时效组织演化的影响[J]. 材料工程, 2022, 50(9): 127.ZHAO Y S, YANG Z, CHEN R Z, et al. Effect of Ru on microstructure evolution of the fourth generation nickle-based single crystal superalloy DD22 during long term aging[J]. Journal of Materials and Engineering, 2022, 50(9): 127-136. [12] QIN P, CHEN L Y, ZHAO C H, et al. Corrosion behavior and mechanism of selective laser melted Ti35Nb alloy produced using prealloyed and mixed powder in Hank’s solution[J]. Corrosion Science, 2021,189:109609. doi: 10.1016/j.corsci.2021.109609 [13] AZUMI K, MASAHIRO S. Changes in electrochemical properties of the anodic oxide formed on titanium during potential sweep[J]. Corrosion Science, 2001,43:533-546. doi: 10.1016/S0010-938X(00)00105-0 [14] FATTAH A A, SOLTANI F, SHISALIMI F, et al. The semiconducting properties of passive films formed on AISI 316L and AISI 321 stainless steels: A test of the point defect model (PDM)[J]. Corrosion Science, 2011, 53: 3186-3192. -