Carbon enriched defect and the associated deformation cracking behaviors in a titanium alloy
-
摘要: 针对Ti-6Al-4V钛合金锻棒中超声波探伤出现异常杂波的问题,通过光学显微镜和扫描电镜金相分析、显微硬度、能谱、电子探针、背散射电子衍射等表征方法,在锻棒中出现异常杂波的位置发现了不常见的富碳缺陷及其导致的裂纹缺陷。首先,在微观组织中观察到了一种被α相稳定区域环绕的斑块特征。然后,通过化学成分和晶体学分析,确认了这种斑块是具有有序FCC晶格的Ti2C相,而环绕的α相稳定区域则是由硬α相组成。根据化学元素分布特点,推定缺陷来源是受到富含碳氮等元素的异物污染的原材料。在锻造变形过程中,微裂纹在Ti2C/α相界形成,并向α相内扩展。微裂纹最终突破Ti2C晶粒的裂尖桥接作用,汇合形成宏观裂纹缺陷。Abstract: Since the contacting ultrasonic detection results indicated some defects existed in a bar of Ti-6Al-4V alloy, researching work had been carried out using optical microscope, scanning electron microscope metallographic analysis, microhardness, energy spectrum, electron probe, backscatter electron diffraction and other characterization methods. And uncommon carbon enriched defect had been figured out. Flecks surrounded with α stable area were observed in the microstructure. Then, it was figured out that flecks were Ti2C with ordered FCC crystal and the α stable area was hard α phase based on the chemical composition and crystallology analysis. According to the distribution characteristics of chemical elements, the defect source was presumed to be raw materials contaminated by elements rich in carbon and nitrogen. Micro cracks initiated at Ti2C/α boundaries and grew into the α side in the hard α and Ti2C regions during the forging. Micro cracks would break through the Ti2C crystal bridges and merged into ultrasonically detectable macro crack defects at last.
-
Key words:
- carbon enriched defect /
- hard α phase /
- Ti2C /
- grain bridge
-
图 10 热变形过程中碳化物引起的开裂行为分析
(a)钛合金双相微观组织承受15%下压量的等效应变场仿真[13];(b)局部位向差图(KAM);(c)小角度晶界比例-角度曲线;(d)Ti2C斑块区域中的裂纹
Figure 10. Analysis of cracking behavior caused by carbide during thermal deformation
表 1 在斑块区域、邻近区域、正常区域通过电子探针分析获得的化学成分
Table 1. EPMA results at Fleck, the neighborhood, and the normal area
% 位置 Ti Al V Fe O N H 总计 斑块 88.7 0.16 0.77 0.006 0.160* 89.796 邻近区域 92.6 4.46 1.96 0.005 0.160* 99.185 正常区域P0 89.5 6.03 4.12 0.173 0.160* 99.983 宏观化学成分 6.10 4.06 0.190 0.160 0.0064 0.0009 * 由于电子探针无法准确测定轻气体元素的含量,氧元素的微区含量参照宏观化学成分检测结果。 表 2 常见合金元素影响钛合金相变点的经验系数[11−12]
Table 2. The empirical coefficients influencing the phase transition point for commonly titanium alloying elements[11−12]
元素 w/% 系数 α稳定元素 Al** 0.0~2.0 14.5① 2.0~7.0 23.0① N 0.0~0.5 5.5② O 0.0~1.0 2.0② C 0.0~0.15 2.0② β稳定元素 H 0.0~5.0 −5.5② Si 0.0~0.45 −1.0③ Mo 0.0~5.0 −5.5① V 0.0~10.0 −14.0① Fe 0.0~15.0 −16.5① Cu 0.0~7.0 −12.0① Nb 0.0~10.0 −8.5① Cr 0.0~7.0 −15.5① 中性元素 Zr 0.0~10.0 −2.0① Sn 0.0~18.0 −1.0① ** 铝元素对相变点的影响的计算方法为分段计算并累积结果;①为每变化1.00%的结果;②为每变化0.01%的结果;③为每变化0.10%的结果。 -
[1] LÜTJERING G, WILLIAMS J C. Titanium, second ed[M]. New York: Springer Berlin Heidelberg, 2007: 68-69. [2] LEYENS C, PETERS M. Titanium and titanium alloys[M]. Wiley-VCH Weinheim, 2003: 9-10. [3] SUN F S, LAVERNIA E J. Creep behavior of nonburning Ti-35V-15Cr-xC alloys[J]. J. Mater. Eng. Perform., 2005,14:784-787. doi: 10.1361/105994905X75619 [4] YAMAMOTO S, DATE N, MORI Y, et al. Effects of TiC addition on directionally solidified microstructure of Ti6Al4V[J]. Metall. Mater. Trans. A, 2019,50A:3174-3185. [5] WANJARA P, DREW R A L, ROOT J, et al. Evidence for stable stoichiometric Ti2C at the interface in TiC particulate reinforced Ti alloy composites[J]. Acta Mater., 2000,48:1443-1450. doi: 10.1016/S1359-6454(99)00453-X [6] BADINI C, UBERTALLI G, PUPPO D, et al. High temperature behavior of a Ti-6Al-4V/TiCP composite processed by BE-CIP-HIP method[J]. J. Mater. Sci., 2000,35:3903-3912. doi: 10.1023/A:1004893700762 [7] GORETZKI H. Neutron diffraction studies on titanium-carbon and zirconium-carbon alloys[J]. Phys. Stat. Sol., 1968,20:K141-K143. [8] LU W, SHI Y, LEI Y, et al. Effect of electron beam welding on the microstructures and mechanical properties of thick TC4-DT alloy[J]. Mater. Des., 2012,34:509-515. doi: 10.1016/j.matdes.2011.09.004 [9] YAN M, QIAN M, KONG C, et al. Impackts of trace carbon on the microstructure of as-sintered biomedical Ti-15Mo alloy and reassessment of the maximum carbon limit[J]. Acta Biomater., 2014,10:1014-1023. doi: 10.1016/j.actbio.2013.10.034 [10] LI Y G, BLENKINSOP P A, LORETTO M H, et al. Effect of carbon and oxygen on microstructure and mechanical properties of Ti-25V-15Cr-2Al (wt. %) alloys[J]. Acta Mater., 1999,47:2889-2905. doi: 10.1016/S1359-6454(99)00173-1 [11] NIU R, GE P, YANG G, et al. Determination of phase transformation point of TC21 titanium alloy[J]. Mater. Heat Teat., 2010,39:15-16. [12] LI M, ZHANG J, TANG S. Determination of phase transition point of TC10 titanium alloy[J]. Ning. Eng. Tech., 2014,13:21-23. [13] GAO X X. Study of microstructure evolution of Ti60 titanium alloy during controlling of bimodal structure[D]. Xi’an: Northwestern Polytechnical University, 2018. (高雄雄. Ti60 钛合金双态组织调控过程中显微组织演变规律研究[D]. 西安: 西北工业大学,2018.GAO X X. Study of microstructure evolution of Ti60 titanium alloy during controlling of bimodal structure[D]. Xi’an: Northwestern Polytechnical University, 2018. [14] ZHENG Y, ZENG W, LI D, et al. High cycle fatigue behaviors at high temperatures of a Ti2AlNb-based alloy[J]. Adv. Eng. Mater., 2018,201801045:1-11. [15] RITCHIE R O. The conflicts between strength and toughness[J]. Nat. Mater., 2011,10:817-822. doi: 10.1038/nmat3115 -