Electrochemical corrosion behaviors of commercially pure titanium fabricated by equal channel double angular pressing
-
摘要: 采用BC路径等通道双转角挤压(ECDAP)方法成功制备出2道次工业纯钛。以3.5%NaCl腐蚀溶液为介质,对大塑性变形前后工业纯钛的电化学腐蚀行为进行了研究,获得了开路电位、动电位极化曲线、电化学阻抗的变化规律。同时,测试分析了显微硬度变化情况。结果表明,相比原始材料,ECDAP工艺制备的超细晶纯钛兼具更高的显微硬度与更优异的耐腐蚀性能。2道次变形试样显微硬度(HV)达157.4,相比原始材料增幅为20.6%。单道次变形试样的开路电位值高于原始材料,低于2道次变形试样。在阳极氧化过程中,变形试样的电流更加稳定,钝化状态更加不易被破坏。极化电阻结果表明,2道次变形试样极化电阻最高,腐蚀过程中试样越不容易出现点蚀。相比变形试样,原始材料腐蚀表面点蚀坑数量更多,蚀孔又大又深。ECDAP变形处理试样耐腐蚀性能优于原始材料,并且2道次ECDAP试样耐腐蚀性能最佳。Abstract: Commercially pure titanium (CP-Ti) was successfully fabricated by 2 passes of equal channel double angular pressing (ECDAP) process under BC route. The electrochemical corrosion behaviors of CP-Ti before and after ECDAP were also tested and analyzed in a 3.5%NaCl solution. The variation laws of circuit potential, dynamic potential polarization curve, and electrochemical impedance were obtained. The microhardness of the deformed specimens was tested and analyzed. The result shows, compared to the original material, the ultra-fine crystalline pure titanium fabricated by ECDAP process has higher microhardness and better corrosion resistance. The microhardness (HV) of the 2-pass deformed sample reaches 157.4 with an increase of 20.6% compared to the original material. The open circuit potential value of the 1-pass deformed sample is higher than that of the original material and lower than that of the 2-pass deformed sample. During the anodizing process, the current of the deformed sample is more stable, and the passivation state is less likely to be destroyed. The polarization resistance results show that the 2-pass deformed sample has the highest polarization resistance, and the sample is less prone to pitting corrosion during the corrosion process. Compared to the deformed samples, the original material has more corrosion pits with larger and deeper sizes on the corrosion surface. The corrosion performance of ECDAP deformed specimens is better than the original annealed sample, and the 2-pass deformed sample shows the best corrosion resistance.
-
表 1 不同条件下工业纯钛的动电位极化曲线特征参数
Table 1. Characteristic parameters of dynamic potential polarization curve of CP-Ti under different conditions
挤压道次 Ecorr/V ba bc Icorr/(A·cm−2) Rp/(Ω·cm−2) 0 − 1.2658 0.133 −0.017 1.38931 E-066099.78654 1 − 1.2342 0.140 −0.068 1.31311 E-0643780.07482 2 − 1.2027 0.077 −0.053 9.62 E-07 76882.50184 表 2 不同条件下工业纯钛在3.5%NaCl溶液中等效电路拟合结果
Table 2. Values of equivalent circuit elements of CP-Ti under different conditions
道次 Rs/(Ω·cm−2) Rp/(Ω·cm−2) C/(F·cm−2) n 0 20.15 141 000 0.00002826 0.8343 1 26.23 162 700 0.00004146 0.8531 2 11.56 835 500 0.00008785 0.8784 -
[1] YANG C Y, GAO N X, GENG Q, et al. Discussion on the technical path of green development of construction machinery in the context of “Peak Carbon Emission and Carbon Neutrality” in China[J]. Lubricating Oil, 2022, 37(1): 6-11. (杨春永, 高乃修, 耿青, 等. 我国“碳达峰·碳中和”目标下工程机械绿色发展的技术路径探讨[J]. 润滑油, 2022, 37(1): 6-11.YANG C Y, GAO N X, GENG Q, et al. Discussion on the technical path of green development of construction machinery in the context of “Peak Carbon Emission and Carbon Neutrality” in China[J]. Lubricating Oil, 2022, 37(1): 6-11. [2] WANG Y, BAO W S, CHEN W J. Fatigue prediction of excavator working device based on service environment[J]. Baosteel Technology, 2023(2):39-45. (王勇, 暴文帅, 陈维晋. 基于服役环境挖掘机工作装置疲劳寿命预测[J]. 宝钢技术, 2023(2):39-45. doi: 10.3969/j.issn.1008-0716.2023.02.008WANG Y, BAO W S, CHEN W J. Fatigue prediction of excavator working device based on service environment[J]. Baosteel Technology, 2023(2): 39-45. doi: 10.3969/j.issn.1008-0716.2023.02.008 [3] USMANOV E I, REZYAPOVA L R, VALIEV R Z. High-strength state and strengthening mechanisms of ultrafine-grained titanium[J]. Physical meshomechanic, 2023, 26(5): 483-494. [4] FATTAHI M, HSU C Y, ALI A O, et al. Severe plastic deformation: Nanostructured materials, metal-based and polymer-based nanocomposites: A review[J]. Heliyon, 2023,Dec,9(12):e22559. [5] VALIEV R Z, LANGDON T G. Principles of equal-channel angular pressing as a processing tool for grain refinement[J]. Mater. Sci. 2006, 51: 881-981. [6] MUHAMMAD J Q, GIRIBASKAR S, ANDRZEJ R. Effect of incremental equal channel angular pressing (I-ECAP) on the microstructural characteristics and mechanical behaviour of commercially pure titanium. Materials and Design, 2017, 122: 385-402. [7] WANG X X, ZHANG X, YUAN J C, et al. Deformation behavior, microstructure and properties of commercially pure aluminum under the coupling effects of upsetting-shear-extrusion process[J]. Rare Metal Materials and Engineering, 2021,50(9):3176-3183. (王晓溪, 张翔, 袁峻池, 等. 镦-剪-挤耦合作用下工业纯铝变形行为及组织性能[J]. 稀有金属材料与工程, 2021,50(9):3176-3183. doi: 10.12442/j.issn.1002-185X.20210124WANG X X, ZHANG X, YUAN J C, et al. Deformation behavior, microstructure and properties of commercially pure aluminum under the coupling effects of upsetting-shear-extrusion process[J]. Rare Metal Materials and Engineering, 2021, 50(9): 3176-3183. doi: 10.12442/j.issn.1002-185X.20210124 [8] WANG X X, ZHANG X, JING X Y, et al. Severe plastic deformation of commercially pure aluminum using a novel process named Equal channel angular expansion extrusion with spherical cavity[J]. Transactions of Nonferrous Metals Society of China, 2020,30(10):2613-2624. doi: 10.1016/S1003-6326(20)65406-1 [9] YANG X R, YANG Y X, LIU X Y, et al. Effect of strain ratio on low cycle fatigue behavior of ultra-fine grained titanium[J]. Rare Metal Materials and Engineering, 2020,49(9):3136-3142. (杨西荣, 杨雨欣, 刘晓燕, 等. 应变比对复合细化超细晶纯钛低周疲劳行为的影响[J]. 稀有金属材料与工程, 2020,49(9):3136-3142.YANG X R, YANG Y X, LIU X Y, et al. Effect of strain ratio on low cycle fatigue behavior of ultra-fine grained titanium[J]. Rare Metal Materials and Engineering, 2020, 49(9): 3136-3142. [10] XUE K M, WANG Z Y, TIAN W C, et al. Study on deformation behavior and mechanism of reduced activation steel in occlusive-double channel equal channel angular pressing[J]. Journal of Plasticity Engineering, 2022,29(5):14-22. (薛克敏, 王召宇, 田文春, 等. 低活化钢闭塞式双通道等径角挤压变形行为及机理研究[J]. 塑性工程学报, 2022,29(5):14-22. doi: 10.3969/j.issn.1007-2012.2022.05.002XUE K M, WANG Z Y, TIAN W C, et al. Study on deformation behavior and mechanism of reduced activation steel in occlusive-double channel equal channel angular pressing[J]. Journal of Plasticity Engineering, 2022, 29(5): 14-22. doi: 10.3969/j.issn.1007-2012.2022.05.002 [11] BINIYAZAN F, SOLEIMANIMEHR H. Improving both strength and ductility of Al-7075 by combining dual equal channel lateral extrusion with aging heat treatment[J]. Iranian Journal of Science and Technology: Transactions of Mechanical Engineering, 2021,5:1-13. [12] WANG X X, ZHANG X, XUE K M, et al. Severe plastic deformation behaviors of commercially pure titanium processed by equal channel double angular pressing[J]. Journal of Plasticity Engineering, 2023,30(10):33-42. (王晓溪, 张 翔, 薛克敏, 等. 等通道双转角挤压工业纯钛的剧烈塑性变形行为[J]. 塑性工程学报, 2023,30(10):33-42. doi: 10.3969/j.issn.1007-2012.2023.10.003WANG X X, ZHANG X, XUE K M, et al. Severe plastic deformation behaviors of commercially pure titanium processed by equal channel double angular pressing[J]. Journal of Plasticity Engineering, 2023, 30(10): 33-42. doi: 10.3969/j.issn.1007-2012.2023.10.003 [13] LI P, DUAN Z H , WU T, et al. Deformation behavior of pure tungsten during equal channel double angular pressing[J]. Rare Metal Materials and Engineering, 2020,49(9):3012-3020. [14] ZHANG X F, WANG Q, ZHANG Z M, et al. Effect of deformation parameters on metal flow in large plastic deformation of rotary backward extrusion[J]. Hot Working Technology, 2021, 50(5): 72-75, 85. (张旭峰, 王强, 张治民, 等. 变形参数对旋转反挤压大塑性变形金属流动的影响[J]. 热加工工艺, 2021, 50(5): 72-75, 85.ZHANG X F, WANG Q, ZHANG Z M, et al. Effect of deformation parameters on metal flow in large plastic deformation of rotary backward extrusion[J]. Hot Working Technology, 2021, 50(5): 72-75, 85. [15] JIANG H, LEI J X, XIE C Y. Electrochemical corrosion behaviors of ultrafine-grained commercially pure titanium processed by rolling[J]. Journal of Plasticity Engineering, 2016,23(6):187-193. (江鸿, 雷君相, 谢超英. 轧制变形超细晶纯钛的电化学腐蚀行为[J]. 塑性工程学报, 2016,23(6):187-193.JIANG H, LEI J X, XIE C Y. Electrochemical corrosion behaviors of ultrafine-grained commercially pure titanium processed by rolling[J]. Journal of Plasticity Engineering, 2016, 23(6): 187-193. [16] WANG Y X, LI Y Q, YU J W, et al. The effect of ECAP and aging on the structure and properties of Mg-4Zn-1Mn-0.5Ca alloy[J]. Hot Working Technology, 2024(7):109-112. (王永祥, 李永峭, 虞佳雯, 等. ECAP和时效对Mg-4Zn-1Mn-0.5Ca合金组织和性能的影响[J]. 热加工工艺, 2024(7):109-112.WANG Y X, LI Y Q, YU J W, et al. The effect of ECAP and aging on the structure and properties of Mg-4Zn-1Mn-0.5Ca alloy[J]. Hot Working Technology, 2024(7): 109-112. [17] CAO C N, ZHANG J Q. Introduction to electrochemical impedance spectroscopy[M]. Beijing: Science Press, 2002. (曹楚南, 张鉴清. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2002.CAO C N, ZHANG J Q. Introduction to electrochemical impedance spectroscopy[M]. Beijing: Science Press, 2002. -