中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等通道双转角挤压工业纯钛的电化学腐蚀行为

张翔 王晓溪 朱迎松 张飞 王海波 李林 梁廷玉

张翔, 王晓溪, 朱迎松, 张飞, 王海波, 李林, 梁廷玉. 等通道双转角挤压工业纯钛的电化学腐蚀行为[J]. 钢铁钒钛, 2025, 46(1): 53-59. doi: 10.7513/j.issn.1004-7638.2025.01.008
引用本文: 张翔, 王晓溪, 朱迎松, 张飞, 王海波, 李林, 梁廷玉. 等通道双转角挤压工业纯钛的电化学腐蚀行为[J]. 钢铁钒钛, 2025, 46(1): 53-59. doi: 10.7513/j.issn.1004-7638.2025.01.008
ZHANG Xiang, WANG Xiaoxi, ZHU Yingsong, ZHANG Fei, WANG Haibo, LI Lin, LIANG Tingyu. Electrochemical corrosion behaviors of commercially pure titanium fabricated by equal channel double angular pressing[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 53-59. doi: 10.7513/j.issn.1004-7638.2025.01.008
Citation: ZHANG Xiang, WANG Xiaoxi, ZHU Yingsong, ZHANG Fei, WANG Haibo, LI Lin, LIANG Tingyu. Electrochemical corrosion behaviors of commercially pure titanium fabricated by equal channel double angular pressing[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 53-59. doi: 10.7513/j.issn.1004-7638.2025.01.008

等通道双转角挤压工业纯钛的电化学腐蚀行为

doi: 10.7513/j.issn.1004-7638.2025.01.008
基金项目: 国家自然科学基金资助项目(51905462);江苏省自然科学基金资助项目(BK20201150、BK20221212);江苏省高等学校自然科学研究重大项目(21KJA460007)。
详细信息
    作者简介:

    张翔,1986年出生,男,浙江杭州人,博士,高级工程师,主要从事精密塑性成形工艺及变形机理研究,E-mail:vip525@163.com

    通讯作者:

    王晓溪,1985年出生,女,安徽淮北人,博士,教授,主要从事高性能轻质金属材料组织性能调控研究;电话:0516-83105375;E-mail:xaoxi119@vp.163.com

  • 中图分类号: TF823

Electrochemical corrosion behaviors of commercially pure titanium fabricated by equal channel double angular pressing

  • 摘要: 采用BC路径等通道双转角挤压(ECDAP)方法成功制备出2道次工业纯钛。以3.5%NaCl腐蚀溶液为介质,对大塑性变形前后工业纯钛的电化学腐蚀行为进行了研究,获得了开路电位、动电位极化曲线、电化学阻抗的变化规律。同时,测试分析了显微硬度变化情况。结果表明,相比原始材料,ECDAP工艺制备的超细晶纯钛兼具更高的显微硬度与更优异的耐腐蚀性能。2道次变形试样显微硬度(HV)达157.4,相比原始材料增幅为20.6%。单道次变形试样的开路电位值高于原始材料,低于2道次变形试样。在阳极氧化过程中,变形试样的电流更加稳定,钝化状态更加不易被破坏。极化电阻结果表明,2道次变形试样极化电阻最高,腐蚀过程中试样越不容易出现点蚀。相比变形试样,原始材料腐蚀表面点蚀坑数量更多,蚀孔又大又深。ECDAP变形处理试样耐腐蚀性能优于原始材料,并且2道次ECDAP试样耐腐蚀性能最佳。
  • 图  1  ECDAP模具结构示意

    Figure  1.  Schematic diagram of ECDAP process

    图  2  (a)电化学测试固封样品;(b)电化学工作站

    Figure  2.  (a)Encapsulated sample; (b) electrochemical workstation

    图  3  工业纯钛挤压变形试样宏观形貌

    Figure  3.  Macroscopic morphology of the deformed billets of commercially pure titanium

    图  4  工业纯钛的EBSD组织

    (a)退火态;(b)2道次ECDAP挤压态

    Figure  4.  EBSD microstructure of CP-Ti

    图  5  不同条件下工业纯钛的显微硬度

    Figure  5.  Microhardness of CP-Ti under different conditions

    图  6  不同条件下工业纯钛的开路电压

    Figure  6.  Open circuit potential curves of CP-Ti under different conditions

    图  7  不同条件下工业纯钛的动电位极化曲线

    Figure  7.  Dynamic potential polarization curves of CP-Ti under different conditions

    图  8  不同条件下工业纯钛的阻抗谱

    Figure  8.  Impedance spectra of CP-Ti under different conditions

    图  9  电化学阻抗谱测试等效电路

    Figure  9.  Equivalent circuit for EIS tests

    图  10  不同条件下工业纯钛的Nyquist图

    Figure  10.  Nyquist spectra of CP-Ti under different conditions

    图  11  不同条件下工业纯钛的腐蚀形貌

    (a)原始退火态;(b)1道次ECDAP挤压态;(c)2道次ECDAP挤压态

    Figure  11.  Corrosion morphology of CP-Ti under different conditions

    表  1  不同条件下工业纯钛的动电位极化曲线特征参数

    Table  1.   Characteristic parameters of dynamic potential polarization curve of CP-Ti under different conditions

    挤压道次 Ecorr/V ba bc Icorr/(A·cm−2) Rp/(Ω·cm−2)
    0 1.2658 0.133 −0.017 1.38931 E-06 6099.78654
    1 1.2342 0.140 −0.068 1.31311 E-06 43780.07482
    2 1.2027 0.077 −0.053 9.62 E-07 76882.50184
    下载: 导出CSV

    表  2  不同条件下工业纯钛在3.5%NaCl溶液中等效电路拟合结果

    Table  2.   Values of equivalent circuit elements of CP-Ti under different conditions

    道次Rs/(Ω·cm−2)Rp/(Ω·cm−2)C/(F·cm−2)n
    020.15141 0000.000028260.8343
    126.23162 7000.000041460.8531
    211.56835 5000.000087850.8784
    下载: 导出CSV
  • [1] YANG C Y, GAO N X, GENG Q, et al. Discussion on the technical path of green development of construction machinery in the context of “Peak Carbon Emission and Carbon Neutrality” in China[J]. Lubricating Oil, 2022, 37(1): 6-11. (杨春永, 高乃修, 耿青, 等. 我国“碳达峰·碳中和”目标下工程机械绿色发展的技术路径探讨[J]. 润滑油, 2022, 37(1): 6-11.

    YANG C Y, GAO N X, GENG Q, et al. Discussion on the technical path of green development of construction machinery in the context of “Peak Carbon Emission and Carbon Neutrality” in China[J]. Lubricating Oil, 2022, 37(1): 6-11.
    [2] WANG Y, BAO W S, CHEN W J. Fatigue prediction of excavator working device based on service environment[J]. Baosteel Technology, 2023(2):39-45. (王勇, 暴文帅, 陈维晋. 基于服役环境挖掘机工作装置疲劳寿命预测[J]. 宝钢技术, 2023(2):39-45. doi: 10.3969/j.issn.1008-0716.2023.02.008

    WANG Y, BAO W S, CHEN W J. Fatigue prediction of excavator working device based on service environment[J]. Baosteel Technology, 2023(2): 39-45. doi: 10.3969/j.issn.1008-0716.2023.02.008
    [3] USMANOV E I, REZYAPOVA L R, VALIEV R Z. High-strength state and strengthening mechanisms of ultrafine-grained titanium[J]. Physical meshomechanic, 2023, 26(5): 483-494.
    [4] FATTAHI M, HSU C Y, ALI A O, et al. Severe plastic deformation: Nanostructured materials, metal-based and polymer-based nanocomposites: A review[J]. Heliyon, 2023,Dec,9(12):e22559.
    [5] VALIEV R Z, LANGDON T G. Principles of equal-channel angular pressing as a processing tool for grain refinement[J]. Mater. Sci. 2006, 51: 881-981.
    [6] MUHAMMAD J Q, GIRIBASKAR S, ANDRZEJ R. Effect of incremental equal channel angular pressing (I-ECAP) on the microstructural characteristics and mechanical behaviour of commercially pure titanium. Materials and Design, 2017, 122: 385-402.
    [7] WANG X X, ZHANG X, YUAN J C, et al. Deformation behavior, microstructure and properties of commercially pure aluminum under the coupling effects of upsetting-shear-extrusion process[J]. Rare Metal Materials and Engineering, 2021,50(9):3176-3183. (王晓溪, 张翔, 袁峻池, 等. 镦-剪-挤耦合作用下工业纯铝变形行为及组织性能[J]. 稀有金属材料与工程, 2021,50(9):3176-3183. doi: 10.12442/j.issn.1002-185X.20210124

    WANG X X, ZHANG X, YUAN J C, et al. Deformation behavior, microstructure and properties of commercially pure aluminum under the coupling effects of upsetting-shear-extrusion process[J]. Rare Metal Materials and Engineering, 2021, 50(9): 3176-3183. doi: 10.12442/j.issn.1002-185X.20210124
    [8] WANG X X, ZHANG X, JING X Y, et al. Severe plastic deformation of commercially pure aluminum using a novel process named Equal channel angular expansion extrusion with spherical cavity[J]. Transactions of Nonferrous Metals Society of China, 2020,30(10):2613-2624. doi: 10.1016/S1003-6326(20)65406-1
    [9] YANG X R, YANG Y X, LIU X Y, et al. Effect of strain ratio on low cycle fatigue behavior of ultra-fine grained titanium[J]. Rare Metal Materials and Engineering, 2020,49(9):3136-3142. (杨西荣, 杨雨欣, 刘晓燕, 等. 应变比对复合细化超细晶纯钛低周疲劳行为的影响[J]. 稀有金属材料与工程, 2020,49(9):3136-3142.

    YANG X R, YANG Y X, LIU X Y, et al. Effect of strain ratio on low cycle fatigue behavior of ultra-fine grained titanium[J]. Rare Metal Materials and Engineering, 2020, 49(9): 3136-3142.
    [10] XUE K M, WANG Z Y, TIAN W C, et al. Study on deformation behavior and mechanism of reduced activation steel in occlusive-double channel equal channel angular pressing[J]. Journal of Plasticity Engineering, 2022,29(5):14-22. (薛克敏, 王召宇, 田文春, 等. 低活化钢闭塞式双通道等径角挤压变形行为及机理研究[J]. 塑性工程学报, 2022,29(5):14-22. doi: 10.3969/j.issn.1007-2012.2022.05.002

    XUE K M, WANG Z Y, TIAN W C, et al. Study on deformation behavior and mechanism of reduced activation steel in occlusive-double channel equal channel angular pressing[J]. Journal of Plasticity Engineering, 2022, 29(5): 14-22. doi: 10.3969/j.issn.1007-2012.2022.05.002
    [11] BINIYAZAN F, SOLEIMANIMEHR H. Improving both strength and ductility of Al-7075 by combining dual equal channel lateral extrusion with aging heat treatment[J]. Iranian Journal of Science and Technology: Transactions of Mechanical Engineering, 2021,5:1-13.
    [12] WANG X X, ZHANG X, XUE K M, et al. Severe plastic deformation behaviors of commercially pure titanium processed by equal channel double angular pressing[J]. Journal of Plasticity Engineering, 2023,30(10):33-42. (王晓溪, 张 翔, 薛克敏, 等. 等通道双转角挤压工业纯钛的剧烈塑性变形行为[J]. 塑性工程学报, 2023,30(10):33-42. doi: 10.3969/j.issn.1007-2012.2023.10.003

    WANG X X, ZHANG X, XUE K M, et al. Severe plastic deformation behaviors of commercially pure titanium processed by equal channel double angular pressing[J]. Journal of Plasticity Engineering, 2023, 30(10): 33-42. doi: 10.3969/j.issn.1007-2012.2023.10.003
    [13] LI P, DUAN Z H , WU T, et al. Deformation behavior of pure tungsten during equal channel double angular pressing[J]. Rare Metal Materials and Engineering, 2020,49(9):3012-3020.
    [14] ZHANG X F, WANG Q, ZHANG Z M, et al. Effect of deformation parameters on metal flow in large plastic deformation of rotary backward extrusion[J]. Hot Working Technology, 2021, 50(5): 72-75, 85. (张旭峰, 王强, 张治民, 等. 变形参数对旋转反挤压大塑性变形金属流动的影响[J]. 热加工工艺, 2021, 50(5): 72-75, 85.

    ZHANG X F, WANG Q, ZHANG Z M, et al. Effect of deformation parameters on metal flow in large plastic deformation of rotary backward extrusion[J]. Hot Working Technology, 2021, 50(5): 72-75, 85.
    [15] JIANG H, LEI J X, XIE C Y. Electrochemical corrosion behaviors of ultrafine-grained commercially pure titanium processed by rolling[J]. Journal of Plasticity Engineering, 2016,23(6):187-193. (江鸿, 雷君相, 谢超英. 轧制变形超细晶纯钛的电化学腐蚀行为[J]. 塑性工程学报, 2016,23(6):187-193.

    JIANG H, LEI J X, XIE C Y. Electrochemical corrosion behaviors of ultrafine-grained commercially pure titanium processed by rolling[J]. Journal of Plasticity Engineering, 2016, 23(6): 187-193.
    [16] WANG Y X, LI Y Q, YU J W, et al. The effect of ECAP and aging on the structure and properties of Mg-4Zn-1Mn-0.5Ca alloy[J]. Hot Working Technology, 2024(7):109-112. (王永祥, 李永峭, 虞佳雯, 等. ECAP和时效对Mg-4Zn-1Mn-0.5Ca合金组织和性能的影响[J]. 热加工工艺, 2024(7):109-112.

    WANG Y X, LI Y Q, YU J W, et al. The effect of ECAP and aging on the structure and properties of Mg-4Zn-1Mn-0.5Ca alloy[J]. Hot Working Technology, 2024(7): 109-112.
    [17] CAO C N, ZHANG J Q. Introduction to electrochemical impedance spectroscopy[M]. Beijing: Science Press, 2002. (曹楚南, 张鉴清. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2002.

    CAO C N, ZHANG J Q. Introduction to electrochemical impedance spectroscopy[M]. Beijing: Science Press, 2002.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  27
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-22
  • 刊出日期:  2025-02-27

目录

    /

    返回文章
    返回