Influences of cold rolling deformation and annealing temperature on the microstructures and properties of pure titanium seamless tubes
-
摘要: 对两种不同冷轧变形量的TA1纯钛管采用不同温度(450、470、490 ℃)进行退火处理,研究了变形量及退火温度对纯钛管微观组织形貌、织构演变及力学性能的影响。结果表明:小变形量纯钛冷轧管内部存在大量孪晶,主要以{$ \text{11}\bar {\text{2}}\text{2} $}<$ 1\text{1}\bar {\text{2}}\bar {\text{3}}\text{ > } $压缩孪晶和{$ \text{10}\bar {\text{1}}\text{2} $}$ \text{ < 10}\bar {\text{1}}\text{1 > } $拉伸孪晶为主。增大变形量,纯钛冷轧管晶粒变形严重,孪晶数量减少且以压缩孪晶为主。大变形量冷轧管具有强烈的<$ \text{10}\bar {\text{1}}\text{0} $>//AD织构,而小变形量冷轧管以基面双峰织构为主。随着退火温度升高,大变形量无缝管再结晶含量逐渐增加。经490 ℃退火处理后,大变形量纯钛管再结晶程度达到50.5%,抗拉强度显著降低,同时冷轧变形织构变弱,基面双峰织构增强。而小变形无缝管退火后组织变化不明显,强度下降趋势平缓,组织由基面双峰织构逐渐向<$ \text{10}\bar {\text{1}}\text{0} $>//AD织构转变。Abstract: Pure titanium tubes with different cold rolling deformations were annealed at different temperatures (450、470、490 ℃) to investigate the influences of deformations and annealing temperatures on the microstructures, texture evolution and mechanical properties of tubes. It is shown that the microstructure of the cold-rolled tubes with small deformation contains a great amount of twins, which mainly consist of {$ \text{11}\bar {\text{2}}\text{2} $}<$1 \text{1}\bar {\text{2}}\bar {\text{3}}\text{ > } $ compression twins and {$ \text{10}\bar {\text{1}}\text{2} $}$ \text{ < 10}\bar {\text{1}}\text{1 > }\text{} $tensile twins. The grains in the cold-rolled tubes with the greater deformation were severely deformed, along with the reduction of twins amount which is dominated by compression twins. The microstructure of tubes with the large deformation shows a strong texture of <$ \text{10}\bar {\text{1}}\text{0} $>//AD, and the other tube with small deformation shows a basal bimodal basal texture. The recrystallization proportion of the pure titanium tube, which is more severely deformed, increases gradually with the increase in annealing temperatures and its ratio reaches 50.5% after 490 ℃ annealing. Meanwhile, the tensile strength of the strongly deformed tubes decreases dramatically after 490 ℃ annealing, with the weakening of the cold-rolled texture and intensifying of the bimodal basal texture. The microstructural change of seamless tubes with the small deformation is not obvious, with a gentle reduction of the tensile strength, and the texture changes gradually from the bimodal basal texture to <$ \text{10}\bar {\text{1}}\text{0} $>//AD texture with the increase in annealing temperatures.
-
表 1 TA1钛合金铸锭化学成分
Table 1. Chemical composition of the TA1 ingot
% Fe C N H O Ti 0.034 0.005 0.003 0.006 0.032 Bal. 表 2 不同变形量纯钛管的组织特征
Table 2. Microstructural characterization of pure titanium tubes with different deformation degrees
钛管规格
/ mm退火温
度/ ℃平均晶粒
尺寸/μm再结晶
分数/%孪晶占比/% 压缩孪晶
{$ \text{11}\bar {\text{2}}\text{2} $}
$ < 1 \text{1}\bar {\text{2}}\bar {\text{3}} > $拉伸孪晶
{$ \text{10}\bar {\text{1}}\text{2} $}
$ < 10\bar {\text{1}}1 > $Ø25×2 初始态 3.41 1.7 2.08 0.73 450 3.50 11.6 1.31 0.77 470 3.45 27.0 1.82 0.98 490 3.67 50.5 1.64 0.96 Ø57×5 初始态 4.71 0.7 2.10 2.51 450 4.31 1.3 2.35 2.67 470 4.79 1.5 2.53 2.73 490 4.79 5.3 2.11 2.24 -
[1] ZHAO X L, ZHANG M Y, YU C Q, et al. Microstructure and tensile properties of TA2 rolled sheet[J]. Metal World, 2024(1):62-65. (赵小龙, 张明玉, 于成泉, 等. TA2轧制板材的组织与拉伸性能研究[J]. 金属世界, 2024(1):62-65. doi: 10.3969/j.issn.1000-6826.2022.06.1101ZHAO X L, ZHANG M Y, YU C Q, et al. Microstructure and tensile properties of TA2 rolled sheet[J]. Metal World, 2024(1): 62-65. doi: 10.3969/j.issn.1000-6826.2022.06.1101 [2] WU G C, LI S Y, LI J H, et al. Texture evolution during multi-pass cold rolling and annealing of Ti-2Al-1.5Mn alloy[J]. Journal of Alloys and Compounds, 2024,971:172705-172719. doi: 10.1016/j.jallcom.2023.172705 [3] ZHANG H D, TANG X F, DENG L, et al. Study of size effect on anisotropic deformation behavior of rolled α-Ti sheet[J]. Materials Science and Engineering: A, 2022,846:143282-143294. doi: 10.1016/j.msea.2022.143282 [4] ZHANG P P, LI J K, NIU W Y, et al. Investigation on the anisotropy of cold-rolled pure titanium strip[J]. Technology Innovation and Application, 2022,12(25):53-56. (张平平, 李建康, 牛文宇, 等. 冷轧纯钛带各向异性研究[J]. 科技创新与应用, 2022,12(25):53-56.ZHANG P P, LI J K, NIU W Y, et al. Investigation on the anisotropy of cold-rolled pure titanium strip[J]. Technology Innovation and Application, 2022, 12(25): 53-56. [5] ZHEREBTSOV S V, DYAKONOV G S, SALEM A A, et al. Evolution of grain and subgrain structure during cold rolling of co mmercial-purity titanium[J]. Materials Science and Engineering: A, 2011,528(9):3474-3479. doi: 10.1016/j.msea.2011.01.039 [6] ZHANG J M, YU W, SHI J X, et al. Texture and properties of industrial pure titanium thin strip with preparation technology[J]. Chinese Journal of Rare Metals, 2019, 45(8): 905-913. (张家铭, 余伟, 史佳新, 等. 工业纯钛TA1薄带制备工艺对织构与性能的影响[J], 稀有金属, 2021, 45(8): 905-913.ZHANG J M, YU W, SHI J X, et al. Texture and properties of industrial pure titanium thin strip with preparation technology[J]. Chinese Journal of Rare Metals, 2019, 45(8): 905-913. [7] WU J X, WANG Y, CHAPUIS A, et al. Microstructure and texture evoluation of co mmercial pure titanium sheet during cold rolling and annealing[J]. Journal of Chongqing University, 2019,42(8):67-73. (吴佳欣, 王莹, CHAPUIS A, 等. 工业纯钛板材冷轧及退火微观组织和织构演变规律[J]. 重庆大学学报, 2019,42(8):67-73.WU J X, WANG Y, CHAPUIS A, et al. Microstructure and texture evoluation of co mmercial pure titanium sheet during cold rolling and annealing[J]. Journal of Chongqing University, 2019, 42(8): 67-73. [8] ZHANG G H, JIANG H T, WU B, et al. Effect of annealing temperature on texture and anisotropy of mechanical properties of pure titanium (TA1) sheet[J]. Journal of Central South University (Science and Technology), 2019,50(4):806-813. (张贵华, 江海涛, 吴波, 等. 退火温度对纯钛TA1织构及各向异性的影响[J]. 中南大学学报(自然科学版), 2019,50(4):806-813.ZHANG G H, JIANG H T, WU B, et al. Effect of annealing temperature on texture and anisotropy of mechanical properties of pure titanium (TA1) sheet[J]. Journal of Central South University (Science and Technology), 2019, 50(4): 806-813. [9] XU G F, CUI X M, PENG X Y, et al. Annealing heat treatment behavior in CP-Ti[J]. Rare Metal Materials and Engineering, 2013,42(11):2263-2268. (徐国富, 崔学敏, 彭小燕, 等. 冷轧工业纯钛的退火再结晶行为[J]. 稀有金属材料与工程, 2013,42(11):2263-2268.XU G F, CUI X M, PENG X Y, et al. Annealing heat treatment behavior in CP-Ti[J]. Rare Metal Materials and Engineering, 2013, 42(11): 2263-2268. [10] PANG J M, LI M L, LI M Q, et al. Effect of annealing temperature on microstructure and properties of TA1 cold rolling pure titanium plate[J]. Titanium Industry Progress, 2011,28(2):26-28. (庞继明, 李明利, 李明强, 等. 退火温度对TA1钛管材组织和性能的影响[J]. 钛工业进展, 2011,28(2):26-28. doi: 10.3969/j.issn.1009-9964.2011.02.007PANG J M, LI M L, LI M Q, et al. Effect of annealing temperature on microstructure and properties of TA1 cold rolling pure titanium plate[J]. Titanium Industry Progress, 2011, 28(2): 26-28. doi: 10.3969/j.issn.1009-9964.2011.02.007 [11] CAO X, JIA S G, ZHU Q Q, et al. Deformation and annealing behavior of spinning commercially pure titanium TA1[J]. Transactions of Materials and Heat Treatment, 2023,44(8):67-75. (曹晓, 贾淑果, 朱倩倩, 等. 旋压工业纯钛TA1的形变及退火行为[J]. 材料热处理学报, 2023,44(8):67-75.CAO X, JIA S G, ZHU Q Q, et al. Deformation and annealing behavior of spinning commercially pure titanium TA1[J]. Transactions of Materials and Heat Treatment, 2023, 44(8): 67-75. [12] ZHU Y T, LIAO X Z, WU X L, et al. Grain size effect on deformation twinning and detwinning[J]. Journal of Materials Science, 2013,48(13):4467-4475. doi: 10.1007/s10853-013-7140-0 [13] HUANG Z W, JIN S B, ZHOU H, et al. Evolution of twinning systems and variants during sequential twinning in cryo-rolled titanium[J]. International Journal of Plasticity, 2019,112:52-67. doi: 10.1016/j.ijplas.2018.08.008 [14] SUN J L, TRIMBY P W, YAN F K, et al. Grain size effect on deformation twinning propensity in ultrafine-grained hexagonal close-packed titanium[J]. Scripta Materialia, 2013,69(5):428-431. doi: 10.1016/j.scriptamat.2013.06.001 [15] LI X. Research on the deformation twinning and annealing recrystallization behavior of CP-titanium [D]. Changsha: Central South University, 2011. (李旭. 工业纯钛的形变孪生和退火再结晶行为研究[D]. 长沙: 中南大学, 2012.LI X. Research on the deformation twinning and annealing recrystallization behavior of CP-titanium [D]. Changsha: Central South University, 2011. [16] YANG Q, HUI S X, YE W J, et al. Formation mechanism of annealing texture in cold-rolled TA18 titanium tubes[J]. Rare Metal Materials and Engineering, 2023,52(3):899-909. (杨奇, 惠松骁, 叶文君, 等. 冷轧TA18钛合金管材退火织构的形成机制[J]. 稀有金属材料与工程, 2023,52(3):899-909. doi: 10.12442/j.issn.1002-185X.20220095YANG Q, HUI S X, YE W J, et al. Formation mechanism of annealing texture in cold-rolled TA18 titanium tubes[J]. Rare Metal Materials and Engineering, 2023, 52(3): 899-909. doi: 10.12442/j.issn.1002-185X.20220095 [17] YANG Y, LIU X M, LIU H, et al. Influence of rolling deformation amount and annealing temperature on mechanical properties of pure titanium[J]. Journal of Plasticity Engineering, 2022, 29(12): 162-168. (杨易, 刘小敏, 刘欢, 等. 轧制变形量和退火温度对纯钛力学性能的影响[J]. 塑性工程学报, 29(12): 162-168.YANG Y, LIU X M, LIU H, et al. Influence of rolling deformation amount and annealing temperature on mechanical properties of pure titanium[J]. Journal of Plasticity Engineering, 2022, 29(12): 162-168. [18] QUAN G Z, LUO G C, LIANG J T, et al. Modelling for the dynamic recrystallization evolution of Ti–6Al–4V alloy in two-phase temperature range and a wide strain rate range[J]. Computational Materials Science, 2015,97:136-147. doi: 10.1016/j.commatsci.2014.10.009 -