Numerical simulation of thermal tension straightening and optimization of process parameters on TC4 bar
-
摘要: 钛合金棒材在生产加工过程中通常伴随着形状弯曲,热张力矫直是一种有效的矫直方式。运用有限元模拟软件ABAQUS建立了TC4棒材的热张力矫直模型,系统研究了矫直温度、保温时间和拉伸伸长量等矫直工艺参数对棒材直线度和残余应力的影响,并结合矫直物理试验对矫直工艺参数进行优化。结果表明,矫直的温度越高、保温时间越长,热拉伸量越大,TC4钛合金棒材的直线度越小,残余应力也越小;结合实际生产工况,确定750 ℃的矫直温度,2%的热拉伸量和10 s的保温时间为TC4钛合金棒材矫直的最佳工艺参数。Abstract: Shape bending often occurs during the production process of titanium alloy bars, and thermal tension straightening is an effective straightening method. In this study, the thermal tension straightening model of TC4 bar was established by using the finite element simulation software ABAQUS. The influence of straightening process parameters such as straightening temperature, holding time and tensile elongation on the straightness and residual stress of TC4 bar was studied systematically. And the optimized straightening process parameters were obtained combined with the physical experiment of straightening. The results show that the higher the straightening temperature, the longer the holding time and the greater the thermal tensile amount, the smaller the straightness and the smaller the residual stress of TC4 bar. In view of the actual production conditions, the optimal process parameters for the straightening of TC4 titanium alloy bar are determined with a straightening temperature of 750 ℃, a thermal tensile amount of 2% and a holding time of 10 s.
-
表 1 TC4钛合金的化学成分
Table 1. Chemical compositions of TC4 titanium alloy
% Ti V Al Fe C N H O 其他 基体 4.5 6.8 0.30 0.10 0.05 0.015 0.20 0.02 表 2 模拟试验方案
Table 2. Simulation experiment scheme
试验方案 温度/℃ 保温时间/s 伸长量/% 1 600 30 2 2 650 30 2 3 700 30 2 4 750 30 2 5 800 30 2 6 700 1 2 7 700 10 2 8 700 60 2 9 700 120 2 10 700 30 1 11 700 30 3 -
[1] GUO K X. Preparation and application of titanium alloys[J]. Heat Treatment, 2023,38(5):8-12. (郭克星. 钛合金的制备和应用[J]. 热处理, 2023,38(5):8-12. doi: 10.3969/j.issn.1008-1690.2023.05.002GUO K X. Preparation and application of titanium alloys[J]. Heat Treatment, 2023, 38(5): 8-12. doi: 10.3969/j.issn.1008-1690.2023.05.002 [2] KIM W K, SHIN H G, KIM B H, et al. Straightening of micro wires using the direct wire heating and pulling method[J]. International Journal of Machine Tools and Manufacture, 2007,47(7-8):1046-1052. doi: 10.1016/j.ijmachtools.2006.10.002 [3] WANG X H, ZHANG D F, PENG J, et al. Study on relationship model of AZ31 bar tensile straightening process parameters[J]. Journal of System Simulation, 2011,23(12):2577-2581. (王小红, 张丁非, 彭建, 等. AZ31 棒材拉伸矫直工艺参数关系模型研究[J]. 系统仿真学报, 2011,23(12):2577-2581.WANG X H, ZHANG D F, PENG J, et al. Study on relationship model of AZ31 bar tensile straightening process parameters[J]. Journal of System Simulation, 2011, 23(12): 2577-2581. [4] ZHANG S, WU Y, GONG H. A modeling of residual stress in stretched aluminum alloy plate[J]. Journal of Materials Processing Technology, 2012,212(11):2463-2473. [5] DU H E, JIA C L, LU Y P, et al. Numerical simulation of hot forming process parameters of titanium alloy pipe joints[J]. Aerospace Manufacturing Technology, 2012(5):52-54. (杜红娥, 贾春莉, 陆云鹏, 等. 钛合金管件接头热成形工艺参数的数值模拟[J]. 航天制造技术, 2012(5):52-54.DU H E, JIA C L, LU Y P, et al. Numerical simulation of hot forming process parameters of titanium alloy pipe joints[J]. Aerospace Manufacturing Technology, 2012(5): 52-54. [6] ZONG X W, ZHANG J, LU B H. Numerical analysis and microstructure properties of Ti6Al4V under different forming processes[J]. Rare Metals, 2021,45(7):786-795. (宗学文, 张健, 卢秉恒. Ti6Al4V在不同成形工艺下的数值分析及组织性能[J]. 稀有金属, 2021,45(7):786-795.ZONG X W, ZHANG J, LU B H. Numerical analysis and microstructure properties of Ti6Al4V under different forming processes[J]. Rare Metals, 2021, 45(7): 786-795. [7] DENG X, HUI S, YE W, et al. Numerical simulation and processoptimization on hot twist-dtretch straightening of Ti-6Al-4V alloy profile[J]. Materials, 2022,15(13):4522. doi: 10.3390/ma15134522 [8] LIN Y C, CHEN X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Materials & Design, 2011,32(4):1733-1759. [9] KOTKUNDE N, DEOLE A D, GUPTA A K, et al. Comparative study of constitutive modeling for Ti–6Al–4V alloy at low strain rates and elevated temperatures[J]. Materials & Design, 2014,55:999-1005. [10] TAO Z, FAN X, HE Y, et al. A modified Johnson–Cook model for NC warm bending of large diameter thin-walled Ti–6Al–4V tube in wide ranges of strain rates and temperatures[J]. Transactions of Nonferrous Metals Society of China, 2018,28(2):298-308. doi: 10.1016/S1003-6326(18)64663-1 [11] JI G, LI F, LI Q, et al. A comparative study on Arrhenius-type constitutive model and artificial neural network model to predict high-temperature deformation behaviour in Aermet100 steel[J]. Materials Science and Engineering: A, 2011,528(13-14):4774-4782. doi: 10.1016/j.msea.2011.03.017 [12] CAI J, LI F, LIU T, et al. Constitutive equations for elevated temperature flow stress of Ti–6Al–4V alloy considering the effect of strain[J]. Materials & Design, 2011,32(3):1144-1151. [13] HAN X, YANG J, LI J, et al. Constitutive Modeling on the Ti-6Al-4V Alloy during Air Cooling and Application[J]. Metals, 2022,12(3):513. doi: 10.3390/met12030513 [14] CHU Y D, GAO W Q, WU T D, et al. Finite element simulation of forming process of TC4 titanium alloy Y-shaped rotary die forging[J]. Casting Technology, 2023,44(3):240-245. (楚玉东, 高文强, 吴天栋, 等. TC4钛合金Y型回转体模锻件成形过程的有限元模拟[J]. 铸造技术, 2023,44(03):240-245.CHU Y D, GAO W Q, WU T D, et al. Finite element simulation of forming process of TC4 titanium alloy Y-shaped rotary die forging[J]. Casting Technology, 2023, 44(3): 240-245. [15] ZHANG F L, HAO T C, CAO J C, et al. Finite element simulation and experimental study on multi-pass thermal deformation behavior of Ti-Zr composite microalloy steel[J]. Journal of Iron and Steel Research, 2023,35(4):425-433. (张凡林, 郝天赐, 曹建春, 等. Ti-Zr复合微合金钢多道次热变形行为有限元模拟及实验研究[J]. 钢铁研究学报, 2023,35(4):425-433.ZHANG F L, HAO T C, CAO J C, et al. Finite element simulation and experimental study on multi-pass thermal deformation behavior of Ti-Zr composite microalloy steel[J]. Journal of Iron and Steel Research, 2023, 35(4): 425-433. [16] LI Y S, YUE Z M, TUO Z Y, et al. Simulation and optimization of 6061 free bending forming process of aluminum alloy pipe[J]. Chinese Journal of Engineering, 2020,42(6):769-777. (李玉森, 岳振明, 妥之彧, 等. 铝合金管材6061自由弯曲成形工艺仿真及优化[J]. 工程科学学报, 2020,42(06):769-777.LI Y S, YUE Z M, TUO Z Y, et al. Simulation and optimization of 6061 free bending forming process of aluminum alloy pipe[J]. Chinese Journal of Engineering, 2020, 42(6): 769-777. -