中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TC4棒材热张力矫直数值模拟及工艺参数优化

王保琳 黄文斌 王富强 柏春光 穆生龙 王冉 张志强

王保琳, 黄文斌, 王富强, 柏春光, 穆生龙, 王冉, 张志强. TC4棒材热张力矫直数值模拟及工艺参数优化[J]. 钢铁钒钛, 2025, 46(1): 67-74. doi: 10.7513/j.issn.1004-7638.2025.01.010
引用本文: 王保琳, 黄文斌, 王富强, 柏春光, 穆生龙, 王冉, 张志强. TC4棒材热张力矫直数值模拟及工艺参数优化[J]. 钢铁钒钛, 2025, 46(1): 67-74. doi: 10.7513/j.issn.1004-7638.2025.01.010
WANG Baolin, HUANG Wenbin, WANG Fuqiang, BAI Chunguang, MU Shenglong, WANG Ran, ZHANG Zhiqiang. Numerical simulation of thermal tension straightening and optimization of process parameters on TC4 bar[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 67-74. doi: 10.7513/j.issn.1004-7638.2025.01.010
Citation: WANG Baolin, HUANG Wenbin, WANG Fuqiang, BAI Chunguang, MU Shenglong, WANG Ran, ZHANG Zhiqiang. Numerical simulation of thermal tension straightening and optimization of process parameters on TC4 bar[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 67-74. doi: 10.7513/j.issn.1004-7638.2025.01.010

TC4棒材热张力矫直数值模拟及工艺参数优化

doi: 10.7513/j.issn.1004-7638.2025.01.010
基金项目: 国家自然科学基金委,青年基金项目(编号:52202271);辽宁省科技厅,省博士启动基金项目(编号:2023-BS-144);辽宁省教育厅青年项目,(编号:JYTQN2023375)。
详细信息
    作者简介:

    王保琳,1998年出生,女,河南驻马店人,硕士研究生,主要研究方向为钛合金热处理,E-mail:1213708276@qq.com

    通讯作者:

    柏春光,1978年出生,男,山东聊城人,研究员,博士,主要研究方向为医用工程合金材料,E-mail:cgbai@imr.ac.cn

  • 中图分类号: TF823

Numerical simulation of thermal tension straightening and optimization of process parameters on TC4 bar

  • 摘要: 钛合金棒材在生产加工过程中通常伴随着形状弯曲,热张力矫直是一种有效的矫直方式。运用有限元模拟软件ABAQUS建立了TC4棒材的热张力矫直模型,系统研究了矫直温度、保温时间和拉伸伸长量等矫直工艺参数对棒材直线度和残余应力的影响,并结合矫直物理试验对矫直工艺参数进行优化。结果表明,矫直的温度越高、保温时间越长,热拉伸量越大,TC4钛合金棒材的直线度越小,残余应力也越小;结合实际生产工况,确定750 ℃的矫直温度,2%的热拉伸量和10 s的保温时间为TC4钛合金棒材矫直的最佳工艺参数。
  • 图  1  TC4在不同拉伸温度下的应力-应变曲线[7]

    Figure  1.  Stress-strain curves of TC4 at different tensile temperatures[7]

    图  2  TC4在不同拉伸温度下的应力松弛曲线[7]

    Figure  2.  Stress relaxation curves of TC4 at different temperatures[7]

    图  3  棒材初始形状的几何模型

    Figure  3.  Geometric model of the initial shape of the bar

    图  4  待矫直棒材的网格模型

    Figure  4.  Meshed model of the bar to be straightened

    图  5  回弹预测模型

    Figure  5.  Springback prediction model

    图  6  矫直过程仿真

    (a)拉直;(b)加热;(c)热拉伸;(d)保温;(e)冷却;(f)反弹

    Figure  6.  Simulation diagrams of the straightening procedure

    图  7  不同温度下矫直效果

    (a)直线度;(b)轴向残余应力分布

    Figure  7.  Straightening effect at different temperatures

    图  8  不同保温时间下矫直效果

    (a)直线度;(b)轴向残余应力

    Figure  8.  Straightening effect at different holding time

    图  9  不同伸长量下矫直效果

    (a) 直线度;(b)轴向残余应力

    Figure  9.  Straightening effect at different elongation

    图  10  热拉伸前棒材弯曲内外侧受力示意

    Figure  10.  Schematic diagram of the force on the inside and outside of the bar bending before hot drawing

    图  11  模拟与试验结果对比

    (a)温度;(b)保温时间

    Figure  11.  Comparison of simulation and experimental results

    表  1  TC4钛合金的化学成分

    Table  1.   Chemical compositions of TC4 titanium alloy %

    TiVAlFeCNHO其他
    基体4.56.80.300.100.050.0150.200.02
    下载: 导出CSV

    表  2  模拟试验方案

    Table  2.   Simulation experiment scheme

    试验方案温度/℃保温时间/s伸长量/%
    1600302
    2650302
    3700302
    4750302
    5800302
    670012
    7700102
    8700602
    97001202
    10700301
    11700303
    下载: 导出CSV
  • [1] GUO K X. Preparation and application of titanium alloys[J]. Heat Treatment, 2023,38(5):8-12. (郭克星. 钛合金的制备和应用[J]. 热处理, 2023,38(5):8-12. doi: 10.3969/j.issn.1008-1690.2023.05.002

    GUO K X. Preparation and application of titanium alloys[J]. Heat Treatment, 2023, 38(5): 8-12. doi: 10.3969/j.issn.1008-1690.2023.05.002
    [2] KIM W K, SHIN H G, KIM B H, et al. Straightening of micro wires using the direct wire heating and pulling method[J]. International Journal of Machine Tools and Manufacture, 2007,47(7-8):1046-1052. doi: 10.1016/j.ijmachtools.2006.10.002
    [3] WANG X H, ZHANG D F, PENG J, et al. Study on relationship model of AZ31 bar tensile straightening process parameters[J]. Journal of System Simulation, 2011,23(12):2577-2581. (王小红, 张丁非, 彭建, 等. AZ31 棒材拉伸矫直工艺参数关系模型研究[J]. 系统仿真学报, 2011,23(12):2577-2581.

    WANG X H, ZHANG D F, PENG J, et al. Study on relationship model of AZ31 bar tensile straightening process parameters[J]. Journal of System Simulation, 2011, 23(12): 2577-2581.
    [4] ZHANG S, WU Y, GONG H. A modeling of residual stress in stretched aluminum alloy plate[J]. Journal of Materials Processing Technology, 2012,212(11):2463-2473.
    [5] DU H E, JIA C L, LU Y P, et al. Numerical simulation of hot forming process parameters of titanium alloy pipe joints[J]. Aerospace Manufacturing Technology, 2012(5):52-54. (杜红娥, 贾春莉, 陆云鹏, 等. 钛合金管件接头热成形工艺参数的数值模拟[J]. 航天制造技术, 2012(5):52-54.

    DU H E, JIA C L, LU Y P, et al. Numerical simulation of hot forming process parameters of titanium alloy pipe joints[J]. Aerospace Manufacturing Technology, 2012(5): 52-54.
    [6] ZONG X W, ZHANG J, LU B H. Numerical analysis and microstructure properties of Ti6Al4V under different forming processes[J]. Rare Metals, 2021,45(7):786-795. (宗学文, 张健, 卢秉恒. Ti6Al4V在不同成形工艺下的数值分析及组织性能[J]. 稀有金属, 2021,45(7):786-795.

    ZONG X W, ZHANG J, LU B H. Numerical analysis and microstructure properties of Ti6Al4V under different forming processes[J]. Rare Metals, 2021, 45(7): 786-795.
    [7] DENG X, HUI S, YE W, et al. Numerical simulation and processoptimization on hot twist-dtretch straightening of Ti-6Al-4V alloy profile[J]. Materials, 2022,15(13):4522. doi: 10.3390/ma15134522
    [8] LIN Y C, CHEN X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Materials & Design, 2011,32(4):1733-1759.
    [9] KOTKUNDE N, DEOLE A D, GUPTA A K, et al. Comparative study of constitutive modeling for Ti–6Al–4V alloy at low strain rates and elevated temperatures[J]. Materials & Design, 2014,55:999-1005.
    [10] TAO Z, FAN X, HE Y, et al. A modified Johnson–Cook model for NC warm bending of large diameter thin-walled Ti–6Al–4V tube in wide ranges of strain rates and temperatures[J]. Transactions of Nonferrous Metals Society of China, 2018,28(2):298-308. doi: 10.1016/S1003-6326(18)64663-1
    [11] JI G, LI F, LI Q, et al. A comparative study on Arrhenius-type constitutive model and artificial neural network model to predict high-temperature deformation behaviour in Aermet100 steel[J]. Materials Science and Engineering: A, 2011,528(13-14):4774-4782. doi: 10.1016/j.msea.2011.03.017
    [12] CAI J, LI F, LIU T, et al. Constitutive equations for elevated temperature flow stress of Ti–6Al–4V alloy considering the effect of strain[J]. Materials & Design, 2011,32(3):1144-1151.
    [13] HAN X, YANG J, LI J, et al. Constitutive Modeling on the Ti-6Al-4V Alloy during Air Cooling and Application[J]. Metals, 2022,12(3):513. doi: 10.3390/met12030513
    [14] CHU Y D, GAO W Q, WU T D, et al. Finite element simulation of forming process of TC4 titanium alloy Y-shaped rotary die forging[J]. Casting Technology, 2023,44(3):240-245. (楚玉东, 高文强, 吴天栋, 等. TC4钛合金Y型回转体模锻件成形过程的有限元模拟[J]. 铸造技术, 2023,44(03):240-245.

    CHU Y D, GAO W Q, WU T D, et al. Finite element simulation of forming process of TC4 titanium alloy Y-shaped rotary die forging[J]. Casting Technology, 2023, 44(3): 240-245.
    [15] ZHANG F L, HAO T C, CAO J C, et al. Finite element simulation and experimental study on multi-pass thermal deformation behavior of Ti-Zr composite microalloy steel[J]. Journal of Iron and Steel Research, 2023,35(4):425-433. (张凡林, 郝天赐, 曹建春, 等. Ti-Zr复合微合金钢多道次热变形行为有限元模拟及实验研究[J]. 钢铁研究学报, 2023,35(4):425-433.

    ZHANG F L, HAO T C, CAO J C, et al. Finite element simulation and experimental study on multi-pass thermal deformation behavior of Ti-Zr composite microalloy steel[J]. Journal of Iron and Steel Research, 2023, 35(4): 425-433.
    [16] LI Y S, YUE Z M, TUO Z Y, et al. Simulation and optimization of 6061 free bending forming process of aluminum alloy pipe[J]. Chinese Journal of Engineering, 2020,42(6):769-777. (李玉森, 岳振明, 妥之彧, 等. 铝合金管材6061自由弯曲成形工艺仿真及优化[J]. 工程科学学报, 2020,42(06):769-777.

    LI Y S, YUE Z M, TUO Z Y, et al. Simulation and optimization of 6061 free bending forming process of aluminum alloy pipe[J]. Chinese Journal of Engineering, 2020, 42(6): 769-777.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  21
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-27
  • 刊出日期:  2025-02-27

目录

    /

    返回文章
    返回