Effect of welding current on droplet transition in MIG welding of TC4 titanium alloy
-
摘要: TC4钛合金是α+β双相钛合金,密度低、比强度高、焊接性良好、耐腐蚀,在兵器、航空、航天、船舶和轨道等领域应用广泛,是产品轻量化的重要材料之一。采用熔化极气体保护焊(MIG),研究焊接电流(80~300 A)对熔滴过渡和焊缝成形的影响。结果表明:随着焊接电流的增加,过渡方式由射滴过渡向射流过渡转变,且在一个脉冲周期内由一滴转变为多滴,最终形成液柱,等离子流力随之增加,电弧形态由钟罩形向锥状过渡,在熔池中心形成犹如指状的熔深,过渡时间减少,过渡频率加快。焊接电流200~240 A时,熔滴过渡均匀,过渡方式为射滴过渡,电弧呈钟罩形且挺度较好,过渡频率较快,焊接过程稳定,焊缝成形良好,熔深、熔宽较大,余高较少,飞溅较少,此为推荐的焊接参数。Abstract: TC4 is a α+β duplex titanium alloy with low density, high specific strength, good weldability and corrosion resistance, which is widely used in weapons, aviation, aerospace, ships and orbits, and is one of the important materials for product lightweight. MIG-MAG welding was used to study the influence of welding current (80 ~ 300 A) on droplet transition and weld forming in this paper. The results show that with the increase of welding current, the transition mode changes from droplet transition to jet transition, and from one drop to multiple droplets in a pulse cycle, and finally forms a liquid column. The plasma flow force increases, the arc shape transits from bell shape to cone, and a finger-like penetration depth is formed in the center of the melt pool. The transition time is reduced, and the transition frequency is accelerated. When the welding current is 200 ~ 240 A, the droplet transition is uniform, the transition mode is the droplet transition. The arc is bell-shaped and the stiffness is good, the transition frequency is fast, the welding process is stable, the weld is well formed. The penetration depth and width are larger, the residual height is less, and the spatter is less, which is the recommended welding parameters.
-
Key words:
- TC4 titanium alloy /
- MIG welding /
- welding current /
- droplet transition /
- weld forming
-
表 1 TC4钛合金化学成分
Table 1. Chemical compositions of TC4 titanium alloy
% Ti Al V Fe C N H O 母材 余量 6.28 4.04 0.136 0.017 0.01 0.001 0.13 焊丝 余量 5.58 4.13 0.22 0.05 0.03 0.015 0.4 表 2 焊接电流参数
Table 2. Welding process parameters
焊接电流/A 焊接速度/(m·min−1) 弧长修正/% 焊丝伸出长度/mm 80 0.3 30 15 100 0.3 30 15 120 0.3 30 15 140 0.3 30 15 160 0.3 30 15 180 0.3 30 15 200 0.3 30 15 220 0.3 30 15 240 0.3 30 15 260 0.3 30 15 280 0.3 30 15 300 0.3 30 15 -
[1] HAO Z L, ZHANG F P, LIU Z C, et al. Research on TIG and MIG welding processes and properties based on TC4 titanium alloy[J]. New Technology & New Process, 2023(12):58-61. (郝子龙, 张粉萍, 刘子聪, 等. 基于TC4钛合金的TIG、MIG焊接电流与性能对比研究[J]. 新技术新工艺, 2023(12):58-61.HAO Z L, ZHANG F P, LIU Z C, et al. Research on TIG and MIG welding processes and properties based on TC4 titanium alloy[J]. New Technology & New Process, 2023(12): 58-61. [2] Li H M, LEI T, FAN S M, et al. Research progress of biomedical titanium alloys[J]. Metallic Functional Materials, 2011,18(2):70-73. [3] L Y, ZHAO Y Q, ZENG W D. Application and development trend of aviation titanium alloy[J]. Materials Reports, 2020,34(S1):280-282. (李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020,34(S1):280-282.L Y, ZHAO Y Q, ZENG W D. Application and development trend of aviation titanium alloy[J]. Materials Reports, 2020, 34(S1): 280-282. [4] ZHAO Y Q, GE P, XIN S W. Progresses of R&D on Ti-alloy materials in recent 5 years[J]. Materials China, 2020(Z1):527-534. (赵永庆, 葛鹏, 辛社伟. 近五年钛合金材料研发进展[J]. 中国材料进展, 2020(Z1):527-534. doi: 10.7502/j.issn.1674-3962.202006025ZHAO Y Q, GE P, XIN S W. Progresses of R&D on Ti-alloy materials in recent 5 years[J]. Materials China, 2020(Z1): 527-534. doi: 10.7502/j.issn.1674-3962.202006025 [5] ZHANG J X, GONG S L, LI X Y, et al. Frontier and research trends on welding technologies for light metals[J]. Welding & Joining, 2008(12):5-10,65. [6] ZHU Z S. Research status and development of titanium alloy technology for aviation in China[J]. Journal of Aeronautical Materials, 2014(4):44-50. (朱知寿. 我国航空用钛合金技术研究现状及发展[J]. 航空材料学报, 2014(4):44-50. doi: 10.11868/j.issn.1005-5053.2014.4.004ZHU Z S. Research status and development of titanium alloy technology for aviation in China[J]. Journal of Aeronautical Materials, 2014(4): 44-50. doi: 10.11868/j.issn.1005-5053.2014.4.004 [7] LIU P F. Research progress on titanium and titanium alloy structural welding technology[J]. MW Metal Forming, 2012(20):11-13. (刘鹏飞. 钛及钛合金结构焊接技术研究进展[J]. 金属加工(热加工), 2012(20):11-13.LIU P F. Research progress on titanium and titanium alloy structural welding technology[J]. MW Metal Forming, 2012(20): 11-13. [8] HE Y F, CHEN D G, ZHANG L, et al. Study on microstructure properties of TC4 titanium alloy MIG welding joint after heat treatment[J]. Iron Steel Vanadium Titanium, 2021,42(6):164-170. (何逸凡, 陈东高, 张龙, 等. TC4钛合金MIG焊接头热处理后组织性能研究[J]. 钢铁钒钛, 2021,42(6):164-170. doi: 10.7513/j.issn.1004-7638.2021.06.024HE Y F, CHEN D G, ZHANG L, et al. Study on microstructure properties of TC4 titanium alloy MIG welding joint after heat treatment[J]. Iron Steel Vanadium Titanium, 2021, 42(6): 164-170. doi: 10.7513/j.issn.1004-7638.2021.06.024 [9] LIU S Y, Wang Y J, GENG T. Study on microstructure and mechanical properties of MIG welded joint of TA5 titanium alloy[J]. Journal of Dalian Jiaotong University, 2018,39(3):86-88. (刘守义, 王有君, 耿涛. 钛合金MIG焊接头组织性能[J]. 大连交通大学学报, 2018,39(3):86-88.LIU S Y, Wang Y J, GENG T. Study on microstructure and mechanical properties of MIG welded joint of TA5 titanium alloy[J]. Journal of Dalian Jiaotong University, 2018, 39(3): 86-88. [10] MOU G, HUA X M, XU X B, et al. Comparative study on TIG and MIG welding processes and properties of 8 mm thick TC4 titanium alloys[J]. Electric Welding Machine., 2020,50(4):70-74,138. (牟刚, 华学明, 徐小波, 等. 8 mm 厚TC4钛合金TIG、MIG焊接电流及性能对比研究[J]. 电焊机, 2020,50(4):70-74,138.MOU G, HUA X M, XU X B, et al. Comparative study on TIG and MIG welding processes and properties of 8 mm thick TC4 titanium alloys[J]. Electric Welding Machine., 2020, 50(4): 70-74,138. [11] GŁOWACKI D, MOĆKO W, MARCZAK M, et al. Energy absorbing properties analysis of layers structure of titanium alloy Ti6Al4V during dynamic impact loading tests[J]. Materials, 2021,14(23):72-79. [12] ZHANG L, CHEN D G, ZHANG Y Y, et al. Research on low-cost TC4 titanium alloy monofilament MIG welding process and performance[J]. Ordnance Material Science and Engineering, 2021,44(1):93-97. (张龙, 陈东高, 张迎迎, 等. 低成本TC4钛合金单丝MIG焊工艺与性能研究[J]. 兵器材料科学与工程, 2021,44(1):93-97.ZHANG L, CHEN D G, ZHANG Y Y, et al. Research on low-cost TC4 titanium alloy monofilament MIG welding process and performance[J]. Ordnance Material Science and Engineering, 2021, 44(1): 93-97. [13] DAI Y, WANG D F, MA L C, et al. Droplet transfer in laser‐MAG hybrid welding of ultra-high strength steel[J]. Ordnance Material Science and Engineering, 2020,43(2):67-71. (戴宇, 王大锋, 马良超, 等. 超高强度钢激光-MAG复合焊熔滴过渡研究[J]. 兵器材料科学与工程, 2020,43(2):67-71.DAI Y, WANG D F, MA L C, et al. Droplet transfer in laser‐MAG hybrid welding of ultra-high strength steel[J]. Ordnance Material Science and Engineering, 2020, 43(2): 67-71. [14] LIU S Y, ZHANG F L, DONG S N, et al. Characteristics analysis of droplet transfer in laser-MAG hybrid welding process[J]. International Journal of Heat and Mass Transfer, 2018,121:805-811. doi: 10.1016/j.ijheatmasstransfer.2018.01.047 [15] HE Y F, WANG C Y, JIA S M, et al. Effects of Mg contents on droplet transition and microstructure properties of 7A52 aluminum alloy by MIG welding[J]. Ordnance Material Science and Engineering, 2023,46(5):76-81. (何逸凡, 王呈阳, 贾舒茗, 等. Mg含量对7A52铝合金MIG焊熔滴过渡及组织性能的影响[J]. 兵器材料科学与工程, 2023,46(5):76-81.HE Y F, WANG C Y, JIA S M, et al. Effects of Mg contents on droplet transition and microstructure properties of 7A52 aluminum alloy by MIG welding[J]. Ordnance Material Science and Engineering, 2023, 46(5): 76-81. -