A review on the activation of high-titanium blast furnace slag powder and its application in concrete
-
摘要: 高钛型高炉渣作为普通工业固废物,由于其TiO2含量较高且主要矿物成分均为结晶性较强的稳定性矿物,致使其活性较低、利用率不高,大多处于堆积状态。为更好地解决高钛型高炉渣活性较低、利用率不高的问题,从高钛型高炉渣粉特性入手,阐述了高钛型高炉渣粉作为辅助性掺合料机械活化、化学激发、复合活化激发、复合其他掺合料共同激发的四种活性激发方式,并分析了四种活性激发方式的激发机理。同时,探讨了高钛型高炉渣粉作为辅助性掺合料对混凝土工作性能、力学性能、耐久性能的影响研究现状与影响机理,评价了高钛型高炉渣粉的环境性能及经济效益,指出了高钛型高炉渣粉活性激发存在的不足与活性提升发展方向,为高钛型高炉渣实现更好的资源化利用提供参考。Abstract: High-titanium blast furnace slag, as an ordinary industrial solid waste, is characterized by low activity and low utilization rate due to its high TiO2 content and predominantly crystalline and stable mineral components, resulting in its accumulation. To better address the issues of low activity and utilization of high-titanium blast furnace slag, this review commences with an analysis of its powder properties and elaborates on four activation methods: mechanical activation, chemical activation, composite activation, and combined activation with other admixtures. The activation mechanisms of these four methods are also analyzed. Furthermore, the current research status and mechanisms of the influence of high-titanium blast furnace slag powder as an auxiliary admixture on the workability, mechanical properties, and durability of concrete are discussed. The environmental performance and economic benefits of high-titanium blast furnace slag powder are evaluated, and the shortcomings and future directions for enhancing its activity are pointed out. This study provides a reference for achieving better resource utilization of high-titanium blast furnace slag.
-
表 1 高钛型高炉渣粉主要化学成分含量
Table 1. The main chemical composition content of high-titanium blast furnace slag powder
% 文献来源 CaO SiO2 TiO2 Al2O3 MgO CaO+SiO2 HOU[4] 26.64 24.76 20.39 13.22 8.37 51.40 YANG[5] 26.09 24.34 20.97 15.49 7.53 50.43 董丽卿[10] 27.06 28.76 16.69 12.57 7.13 55.82 LIU[11] 26.12 23.88 21.14 13.58 8.10 50.00 杨华美[13] 27.92 25.18 20.09 13.19 7.18 53.10 孙金坤[14] 27.00 24.88 21.74 16.70 7.67 51.88 OTOO[19] 26.75 24.68 19.87 13.78 7.29 51.43 叶瑞雪[20] 26.65 24.29 19.48 13.86 6.65 50.94 胥悦[21] 27.83 22.54 22.52 14.97 7.74 50.37 平均值 26.90 24.81 20.32 14.15 7.52 51.71 波动区间 26.09~
27.9222.54~
28.7616.69~
22.5212.57~
16.706.65~
8.3750.00~
55.82标准差 0.65 1.67 1.66 1.31 0.53 1.80 表 2 高钛型高炉渣粉不同激发方式的活性[33]
Table 2. Different excitation methods for the activity of high-titanium blast furnace slag powder[33]
不同激发方式 抗压强度/MPa 活性指数/% 7 d 28 d 7 d 28 d 机械活化 1 13.4 33.5 72.4 73.3 2 15.2 35.2 82.2 77.0 化学激发 1 17.0 36.5 91.9 79.9 2 16.8 36.6 90.8 80.1 3 16.3 35.7 88.1 78.1 复合活化激发 1 17.2 38.2 93.0 83.6 -
[1] LIN B Q, ZHANG Z H. Carbon emissions in China's cement industry: A sector and policy analysis[J]. Renewable & Sustainable Energy Reviews, 2016,58:1387-1394. [2] TAO M, LU D, SHI Y, et al. Utilization and life cycle assessment of low activity solid waste as cementitious materials: A case study of titanium slag and granulated blast furnace slag[J]. Sci Total Environ, 2022,849:157797. doi: 10.1016/j.scitotenv.2022.157797 [3] LI H F, LIU C R, CHEN J X. Investigation of super high-strength and high performance concrete containing low active slag[J]. Concrete, 2009(8):43-46. (李鸿芳, 刘翠然, 陈剑雄. 低活性渣体超高强高性能混凝土研究[J]. 混凝土, 2009(8):43-46.LI H F, LIU C R, CHEN J X. Investigation of super high-strength and high performance concrete containing low active slag[J]. Concrete, 2009(8): 43-46. [4] HOU X, WANG D, SHI Y, et al. Hydraulic activity and microstructure analysis of high-titanium slag[J]. Materials (Basel), 2020,13(5):1239. doi: 10.3390/ma13051239 [5] YANG Y Y, LI C Y, LI H, et al. Microwave-thermal-assisted curing method on geopolymer preparation from Panzhihua high-titanium slag by alkali activation[J]. Construction and Building Materials, 2023,400:132614. doi: 10.1016/j.conbuildmat.2023.132614 [6] LI Y H, YANG Z Y, WANG J Z, et al. System design and preparation of glass-ceramics using titanium blast furnace slag[J]. Iron Steel Vanadium Titanium, 2016,37(1):72-78. (李要辉, 杨志远, 王晋珍, 等. 高钛高炉渣制备微晶石材的体系设计及制备研究[J]. 钢铁钒钛, 2016,37(1):72-78.LI Y H, YANG Z Y, WANG J Z, et al. System design and preparation of glass-ceramics using titanium blast furnace slag[J]. Iron Steel Vanadium Titanium, 2016, 37(1): 72-78. [7] ZHOU X J, HOU D S, CHEN T, et al. The development of concrete filled steel tube with enhanced performance via the use of expansive ultra high performance concrete[J]. Journal of Building Engineering, 2023,79:107793. doi: 10.1016/j.jobe.2023.107793 [8] ZHANG T, HUANG B. Application of pre-wetted high titanium heavy slag aggregate in cement concrete[J]. Materials (Basel), 2022,15(3):15030831. [9] SONG Y, ZENG R, TAO C X, et al. Study on application of titanium slag as cement mixture[J]. Cement Technology, 2022(2):68-73. (宋洋, 曾荣, 陶从喜, 等. 钛矿渣作水泥混合材的应用研究[J]. 水泥技术, 2022(2):68-73.SONG Y, ZENG R, TAO C X, et al. Study on application of titanium slag as cement mixture[J]. Cement Technology, 2022(2): 68-73. [10] DONG L Q, JIANG Y, WANG G M, et al. Study on preparation of super sulfate cement by titanium slag and phosphogypsum[J]. Iron Steel Vanadium Titanium, 2023,44(2):124-131. (董丽卿, 蒋勇, 王国敏, 等. 钛矿渣-磷石膏复合制备超硫酸盐水泥试验研究[J]. 钢铁钒钛, 2023,44(2):124-131. doi: 10.7513/j.issn.1004-7638.2023.02.018DONG L Q, JIANG Y, WANG G M, et al. Study on preparation of super sulfate cement by titanium slag and phosphogypsum[J]. Iron Steel Vanadium Titanium, 2023, 44(2): 124-131. doi: 10.7513/j.issn.1004-7638.2023.02.018 [11] LIU Z, LAI Z Y, LUO X Z, et al. Effect of titanium slag on the properties of magnesium phosphate cement[J]. Construction and Building Materials, 2022,343:128132. doi: 10.1016/j.conbuildmat.2022.128132 [12] WANG S, LÜ S Z, ZHAO J, et al. Preparation of mineral admixture for concrete with high titanium slag[J]. Journal of Southwest University of Science and Technology, 2021,36(1):28-34. (王帅, 吕淑珍, 赵杰, 等. 高钛矿渣制备混凝土用矿物掺合料研究[J]. 西南科技大学学报, 2021,36(1):28-34. doi: 10.3969/j.issn.1671-8755.2021.01.005WANG S, LÜ S Z, ZHAO J, et al. Preparation of mineral admixture for concrete with high titanium slag[J]. Journal of Southwest University of Science and Technology, 2021, 36(1): 28-34. doi: 10.3969/j.issn.1671-8755.2021.01.005 [13] YANG H M. Study on the performance of hydraulic concrete using high titanium slag as additive and aggregate[D]. Wuhan: Changjiang River Scientific Research Institute, 2010. (杨华美. 高钛矿渣作为水工混凝土掺和料及骨料性能研究[D]. 武汉: 长江科学院, 2010.YANG H M. Study on the performance of hydraulic concrete using high titanium slag as additive and aggregate[D]. Wuhan: Changjiang River Scientific Research Institute, 2010. [14] SUN J K, HUANG S H, NIAN H F, et al. Experimental study on optimized mixture design for complex high titanium heavy slag pavement concrete[J]. Concrete, 2011(8):135-137. (孙金坤, 黄双华, 念红芬, 等. 复高钛重矿渣路面混凝土配合比优化设计试验研究[J]. 混凝土, 2011(8):135-137. doi: 10.3969/j.issn.1002-3550.2011.08.045SUN J K, HUANG S H, NIAN H F, et al. Experimental study on optimized mixture design for complex high titanium heavy slag pavement concrete[J]. Concrete, 2011(8): 135-137. doi: 10.3969/j.issn.1002-3550.2011.08.045 [15] WANG W, WANG J, LIANG Y H. Feasibility analysis of high-titanium heavy slag as aggregate for asphalt mixture[J]. Iron Steel Vanadium Titanium, 2022,43(4):87-93. (王伟, 汪杰, 梁月华. 高钛重矿渣作为集料用于沥青混合料的可行性分析研究[J]. 钢铁钒钛, 2022,43(4):87-93. doi: 10.7513/j.issn.1004-7638.2022.04.014WANG W, WANG J, LIANG Y H. Feasibility analysis of high-titanium heavy slag as aggregate for asphalt mixture[J]. Iron Steel Vanadium Titanium, 2022, 43(4): 87-93. doi: 10.7513/j.issn.1004-7638.2022.04.014 [16] XU Z X. Air-quenching high titanium blast furnace slag and its application exploration[D]. Mianyang: Southwest University of Science and Technology, 2023. (徐梓馨. 高钛型高炉渣风淬改性及其应用探索[D]. 绵阳: 西南科技大学, 2023.XU Z X. Air-quenching high titanium blast furnace slag and its application exploration[D]. Mianyang: Southwest University of Science and Technology, 2023. [17] WANG J X, LI J, LU Z Y, et al. Hydration and performances of ordinary portland cement containing metakaolin and titanium slag[J]. Construction and Building Materials, 2024,415:135056. doi: 10.1016/j.conbuildmat.2024.135056 [18] BAI C Y, DENG Y, ZHOU Q, et al. Effect of different curing methods on the preparation of carbonized high-titanium slag based geopolymers[J]. Construction and Building Materials, 2022,342:128023. doi: 10.1016/j.conbuildmat.2022.128023 [19] OTOO S L, SHI Z G, LI Q, et al. Utilization of titanium slag in cement grout for gamma radiation shielding: Hydration, microstructure, mechanical properties and gamma-ray attenuation performance[J]. Construction and Building Materials, 2023,402:133031. doi: 10.1016/j.conbuildmat.2023.133031 [20] YE R X, JI Y L, LIU B L, et al. Slow-release fertilizer with soil remediation function constructed from titanium-bearing blast furnace slag[J]. The Chinese Journal of Nonferrous Metals, 2022,32:2787-2800. (叶瑞雪, 季益龙, 刘秉林, 等. 含钛高炉渣构建具有土壤修复功效的缓释肥料[J]. 中国有色金属学报, 2022,32:2787-2800. doi: 10.11817/j.ysxb.1004.0609.2021-42101YE R X, JI Y L, LIU B L, et al. Slow-release fertilizer with soil remediation function constructed from titanium-bearing blast furnace slag[J]. The Chinese Journal of Nonferrous Metals, 2022, 32: 2787-2800. doi: 10.11817/j.ysxb.1004.0609.2021-42101 [21] XU Y. The research about performances of the concrete mixed with high Ti furnace slag[D]. Chengdu: Xihua University, 2016. (胥悦. 掺加高钛型高炉渣微粉混凝土材料性能研究[D]. 成都: 西华大学, 2016.XU Y. The research about performances of the concrete mixed with high Ti furnace slag[D]. Chengdu: Xihua University, 2016. [22] AO J Q. Application of technology for grinding high titanium granulated blast furnace slag in high performance concrete[D]. Wuhan: Wuhan University of Science and Technology, 2002. (敖进清. 高钛型高炉渣微粉特性及其在高性能混凝土中的应用[D]. 武汉: 武汉科技大学, 2002.AO J Q. Application of technology for grinding high titanium granulated blast furnace slag in high performance concrete[D]. Wuhan: Wuhan University of Science and Technology, 2002. [23] WANG A G, SHI Y, LIU K W, et al. Effect of air-cooled blast furnace slag as fine aggregate on the properties of cement mortar[J]. Materials Reports, 2017,31(12):121-125. (王爱国, 石妍, 刘开伟, 等. 高炉重矿渣作为细骨料对水泥砂浆性能的影响[J]. 材料导报, 2017,31(12):121-125. doi: 10.11896/j.issn.1005-023X.2017.012.025WANG A G, SHI Y, LIU K W, et al. Effect of air-cooled blast furnace slag as fine aggregate on the properties of cement mortar[J]. Materials Reports, 2017, 31(12): 121-125. doi: 10.11896/j.issn.1005-023X.2017.012.025 [24] ZHU S, HU J G, ZHANG C H, et al. Study on optimization and mechanism of mechanical activation process of titanium-bearing blast furnace slag[J]. Journal of Materials Research and Technology, 2022,19:3130-3144. doi: 10.1016/j.jmrt.2022.06.038 [25] GAO L. Research on the effect of grinding on the activity and hydration of high-titanium slag in cement[J]. Science & Technology Industry Parks, 2017(4):54-55. (高亮. 粉磨对高钛矿渣在水泥中活性和水化的影响研究[J]. 中国高新区, 2017(4):54-55.GAO L. Research on the effect of grinding on the activity and hydration of high-titanium slag in cement[J]. Science & Technology Industry Parks, 2017(4): 54-55. [26] KATSIOTI M, TSAKIRIDIS P E, GIANNATOS P, et al. Characterization of various cement grinding aids and their impact on grindability and cement performance[J]. Construction and Building Materials, 2009,23(5):1954-1959. doi: 10.1016/j.conbuildmat.2008.09.003 [27] ZHANG J D. Study on properties of high-titanium content slag grinding[J]. China Powder Science and Technology, 2005(1):21-23. (张继东. 高钛矿渣的粉磨特性研究[J]. 中国粉体技术, 2005(1):21-23. doi: 10.3969/j.issn.1008-5548.2005.01.006ZHANG J D. Study on properties of high-titanium content slag grinding[J]. China Powder Science and Technology, 2005(1): 21-23. doi: 10.3969/j.issn.1008-5548.2005.01.006 [28] QIAO H H, JIANG Y, LU T, et al. Effect of synthesized grinding aid to titanium slag cement[J]. Bulletin of the Chinese Ceramic Society, 2017,36(4):1315-1320. (乔欢欢, 蒋勇, 卢涛, 等. 合成助磨剂对钛矿渣水泥性能的影响[J]. 硅酸盐通报, 2017,36(4):1315-1320.QIAO H H, JIANG Y, LU T, et al. Effect of synthesized grinding aid to titanium slag cement[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(4): 1315-1320. [29] HYEOK S, GEUN J S, KIM D. Development of alkali stimulant-based reinforced grouting material from blast furnace slag powder[J]. The Journal of Engineering Geology, 2021,31(1):67-81. [30] JIANG Y, SU Y B, GAO R, et al. Study on hydration reaction of titanium gypsum-titanium slag low clinker cement[J]. Iron Steel Vanadium Titanium, 2023,44(4):103-111. (蒋勇, 苏姚彬, 高瑞, 等. 钛石膏-钛矿渣低熟料水泥水化反应研究[J]. 钢铁钒钛, 2023,44(4):103-111. doi: 10.7513/j.issn.1004-7638.2023.04.016JIANG Y, SU Y B, GAO R, et al. Study on hydration reaction of titanium gypsum-titanium slag low clinker cement[J]. Iron Steel Vanadium Titanium, 2023, 44(4): 103-111. doi: 10.7513/j.issn.1004-7638.2023.04.016 [31] SU J, SHI Y, YANG H Q. Study on hydration activity of alkali-activated cementitious composite of high-titanium slag and cement[J]. Yangtze River, 2011,42(24):54-57. (苏杰, 石妍, 杨华全. 碱激发高钛矿渣-水泥基胶凝体系水化活性研究[J]. 人民长江, 2011,42(24):54-57. doi: 10.3969/j.issn.1001-4179.2011.24.014SU J, SHI Y, YANG H Q. Study on hydration activity of alkali-activated cementitious composite of high-titanium slag and cement[J]. Yangtze River, 2011, 42(24): 54-57. doi: 10.3969/j.issn.1001-4179.2011.24.014 [32] LIANG Y Q. Optimization and application of cement strengthening agent in high-titanium slag[D]. Kunming: Kunming University of Science and Technology, 2023. (梁延秋. 水泥增强剂优选及在高钛渣中的应用研究[D]. 昆明: 昆明理工大学, 2023.LIANG Y Q. Optimization and application of cement strengthening agent in high-titanium slag[D]. Kunming: Kunming University of Science and Technology, 2023. [33] SHI L A, LU S F, LI Q H, et al. Research on active characteristics and stimulating activity of titanium slag[J]. Bulletin of the Chinese Ceramic Society, 2012,31(6):1554-1558. (石立安, 陆生发, 李启华, 等. 钛渣活性特征及激发活性技术研究[J]. 硅酸盐通报, 2012,31(6):1554-1558.SHI L A, LU S F, LI Q H, et al. Research on active characteristics and stimulating activity of titanium slag[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(6): 1554-1558. [34] HE Z P, XIA J P, ZHENG S. Effect of admixtures on the properties of phosphogypsum based composite cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2016,35(6):1946-1951,1957. (何志鹏, 夏举佩, 郑森. 外加剂对磷石膏基复合胶凝材料性能的影响[J]. 硅酸盐通报, 2016,35(6):1946-1951,1957.HE Z P, XIA J P, ZHENG S. Effect of admixtures on the properties of phosphogypsum based composite cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(6): 1946-1951,1957. [35] DU H H, NI W, GAO G J, et al. Research on application of vanadium-titanium slag in fabricated precast concrete slab[J]. New Building Materials, 2021,48(10):172-177. (杜惠惠, 倪文, 高广军, 等. 钒钛矿渣在装配式预制板材中的应用研究[J]. 新型建筑材料, 2021,48(10):172-177.DU H H, NI W, GAO G J, et al. Research on application of vanadium-titanium slag in fabricated precast concrete slab[J]. New Building Materials, 2021, 48(10): 172-177. [36] Fan Zhi, Lu Zhongyuan, Li Jun, et al. Properties study on titanium slag-circulating fluidized bed combustion (CFBC) fly ash composite mineral admixtures[J]. China Concrete and Cement Products, 2015(2):83-88. (范志, 卢忠远, 李军, 等. 钛矿渣-固硫灰复合矿物掺合料性能研究[J]. 混凝土与水泥制品, 2015(2):83-88.Fan Zhi, Lu Zhongyuan, Li Jun, et al. Properties study on titanium slag-circulating fluidized bed combustion (CFBC) fly ash composite mineral admixtures[J]. China Concrete and Cement Products, 2015(2): 83-88. [37] WANG S. Application of high titanium slag-steel slag-silica fume composite mineral admixture in concrete[D]. Mianyang: Southwest University of Science and Technology, 2021. (王帅. 高钛矿渣-钢渣-硅灰复合矿物掺合料在混凝土中的应用研究[D]. 绵阳: 西南科技大学, 2021.WANG S. Application of high titanium slag-steel slag-silica fume composite mineral admixture in concrete[D]. Mianyang: Southwest University of Science and Technology, 2021. [38] XIAO B, ZHANG R H, HU Z Q. Preparation of lithium slag based supplementary cementitious materials and its impact on concrete performance[J]. China Concrete and Cement Products, 2023(10):82-86. (肖波, 张荣华, 胡卓强. 锂渣基辅助胶凝材料的制备及其对混凝土性能的影响[J]. 混凝土与水泥制品, 2023(10):82-86.XIAO B, ZHANG R H, HU Z Q. Preparation of lithium slag based supplementary cementitious materials and its impact on concrete performance[J]. China Concrete and Cement Products, 2023(10): 82-86. [39] HE Z J. Research on preparation of concrete with pulverized titanium slag[J]. China Harbour Engineering, 2004(6):4-7. (何志军. 应用磨细高钛矿渣配制混凝土的相关试验研究[J]. 中国港湾建设, 2004(6):4-7.HE Z J. Research on preparation of concrete with pulverized titanium slag[J]. China Harbour Engineering, 2004(6): 4-7. [40] CHEN H B. Study on the properties and evaluate the environmental effect of the concrete working in the environment with severe acid rain[D]. Chongqing: Chongqing University, 2006. (陈寒斌. 严重酸雨环境下混凝土性能与环境性评价[D]. 重庆: 重庆大学, 2006.CHEN H B. Study on the properties and evaluate the environmental effect of the concrete working in the environment with severe acid rain[D]. Chongqing: Chongqing University, 2006. [41] QING T. Design and performances of ultra-high performance concrete based on high titanium slag[D]. Mianyang: Southwest University of Science and Technology, 2023. (卿婷. 基于高钛矿渣的超高性能混凝土体系设计与性能研究[D]. 绵阳: 西南科技大学, 2023.QING T. Design and performances of ultra-high performance concrete based on high titanium slag[D]. Mianyang: Southwest University of Science and Technology, 2023. [42] WANG H B, CHENG X L, CANG D Q, et al. Mechanism of increasing concrete strength by titanium contained blast furnace slag[J]. Journal of Building Materials, 2009,12(4):402-406,432. (王怀斌, 程相利, 苍大强, 等. 高炉钛渣提高混凝土强度的作用机理[J]. 建筑材料学报, 2009,12(4):402-406,432.WANG H B, CHENG X L, CANG D Q, et al. Mechanism of increasing concrete strength by titanium contained blast furnace slag[J]. Journal of Building Materials, 2009, 12(4): 402-406,432. [43] LI B, CHEN J Y, CHEN D. High-performance concrete mixed with ground mineral reinforcing materials[J]. Sichuan Architecture, 2003(5):82-84. (李兵, 陈加耘, 陈栋. 掺有磨细矿物质增强材料的高性能混凝土[J]. 四川建筑, 2003(5):82-84. doi: 10.3969/j.issn.1007-8983.2003.05.042LI B, CHEN J Y, CHEN D. High-performance concrete mixed with ground mineral reinforcing materials[J]. Sichuan Architecture, 2003(5): 82-84. doi: 10.3969/j.issn.1007-8983.2003.05.042 -