Study on the effect of microwave pretreatment on the grinding characteristics of vanadium titanium-magnetite based on grinding kinetics
-
摘要: 对微波预处理前后钒钛磁铁矿进行不同磨矿时间的分批磨矿试验,建立了微波预处理前后钒钛磁铁矿的m阶磨矿动力学模型,分析了矿石粒度与磨矿时间对磨矿速度的影响。在磨矿初期,微裂纹数量是影响磨矿速度的主要因素,在磨矿中后期,磨矿概率成为影响磨矿速度的主要因素。微波预处理后粗粒级矿石(−3.350~+1.700 mm)的磨矿速度远高于未处理矿石,而细粒级矿石(−0.057~+0.045 mm)的磨矿速度变化很小。采用微波热力辅助钒钛磁铁矿磨矿有益于改善磨矿产品的粒度组成,从而提高选别效率及精矿质量。Abstract: Batch grinding experiments of vanadium titanium-magnetite (VTM) with different grinding times before and after microwave treatment were carried out. The m-order grinding kinetics model of untreated and microwave treated VTM was established, and the effects of particle size and grinding time on the grinding speed were analyzed. In the initial stage of grinding, the number of microcracks was the main factor affecting the grinding speed. While in the middle and later stages of grinding, the grinding probability became the main factor affecting the grinding speed. The grinding speed of the coarse-grained (−3.350~+1.700 mm) ore after microwave pretreatment was much higher than that of the untreated ore, while the grinding speed of fine-grained (−0.057~+0.045 mm) ore changed slightly. Microwave assisted grinding of VTM is beneficial to improving the particle size composition of the grinding products, thus improving the separation efficiency and the concentrate quality.
-
Key words:
- vanadium titano-magnetite /
- microwave pretreatment /
- grinding kinetics /
- grinding speed
-
表 1 磨矿产品的粒度分布
Table 1. Particle size distribution of ground products
粒度 / mm 未处理矿石/% 微波预处理后矿石/% 0.5 min 1 min 2 min 3 min 5 min 7 min 0.5 min 1 min 2 min 3 min 5 min 7 min −3.350~+1.700 10.89 8.07 5.85 4.25 3.25 2.23 4.84 3.12 1.01 0 0 0 −1.700~+1.180 16.71 14.42 10.92 10.21 8.85 6.73 10.58 5.45 2.97 1.45 0 0 −1.180~+0.850 27.12 23.48 18.54 13.59 10.59 7.89 19.07 9.51 5.08 2.12 0 0 −0.850~+0.425 42.85 36.14 26.28 20.25 15.25 9.52 35.24 21.17 11.24 5.24 0 0 −0.425~+0.180 57.41 49.07 35.04 27.15 20.15 13.24 51.71 41.10 31.24 13.11 2.51 0 −0.180~+0.105 67.44 60.42 55.04 47.35 39.35 26.39 58.01 47.45 34.17 21.31 10.35 4.85 −0.105~+0.075 75.01 65.41 55.44 47.12 43.12 38.41 65.21 56.44 47.40 30.08 24.94 17.06 −0.075~+0.057 79.51 73.04 68.08 64.07 60.07 52.05 73.21 65.27 55.04 39.03 33.47 26.03 −0.057~+0.045 83.25 79.78 71.03 69.02 63.52 59.12 77.87 71.51 61.19 52.98 38.71 30.46 −0.045 100 100 100 100 100 100 100 100 100 100 100 100 表 2 不同粒度矿石的磨矿动力学参数m和k值
Table 2. The grinding kinetic parameters k and m values of ores with different particle sizes
粒度/mm 未处理矿石 微波预处理后矿石 m k R2 m k R2 −3.350~+1.700 0.4797 0.8682 0.9815 0.5627 1.8920 0.9912 −1.700~+1.180 0.5037 0.6852 0.9885 0.6234 1.4688 0.9876 −1.180~+0.850 0.5582 0.5444 0.9748 0.7852 1.2130 0.9689 −0.850~+0.425 0.7360 0.4187 0.9837 1.0123 0.7623 0.9719 −0.425~+0.180 0.7564 0.3997 0.9912 1.0767 0.4914 0.9822 −0.180~+0.105 0.6873 0.2615 0.9795 0.9276 0.4375 0.9789 −0.105~+0.075 0.6593 0.2351 0.9728 0.8923 0.3170 0.9844 −0.075~+0.057 0.5545 0.1551 0.9871 0.8617 0.2011 0.9861 −0.057~+0.045 0.5164 0.1404 0.9855 0.8051 0.1386 0.9624 -
[1] SAMANLI S, CUHADARGLU D, IPEK H, et al. The investigation of grinding kinetics of power plant solid fossil fuel in ball mill[J]. Fuel, 2010,89(3):703-707. doi: 10.1016/j.fuel.2009.09.004 [2] SIMBA K P, MOYS M H. Effects of mixtures of grinding media of different shapes on milling kinetics[J]. Minerals Engineering, 2014,61:40-46. doi: 10.1016/j.mineng.2014.03.006 [3] WANG J, WANG Q L, HU E M. Leaching of low-grade beryllium ore from Xinjiang after microwave pretreatment[J]. Mining and Metallurgical Engineering, 2017,37(3):108-110. (王俊, 王清良, 胡鄂明. 新疆某低品位铍矿微波预处理浸出工艺研究[J]. 矿冶工程, 2017,37(3):108-110. doi: 10.3969/j.issn.0253-6099.2017.03.028WANG J, WANG Q L, HU E M. Leaching of low-grade beryllium ore from Xinjiang after microwave pretreatment[J]. Mining and Metallurgical Engineering, 2017, 37(3): 108-110. doi: 10.3969/j.issn.0253-6099.2017.03.028 [4] WANG J P, JIANG T, LIU Y J, et al. Influence of microwave treatment on grinding and dissociation characteristics of vanadium titano-magnetite[J]. International Journal of Minerals, Metallurgy, and Materials, 2019,37(3):108-110. [5] KOTAKE N, KUBOKI M, KIYA S, et al. Influence of dry and wet grinding conditions on fineness and shape of particle size distribution of product in a ball mill[J]. Advanced Powder Technology, 2011,22(1):86-92. doi: 10.1016/j.apt.2010.03.015 [6] SHI G M, WU C B, XIAO L, et al. Experimental study of grinding system optimization for a tungsten polymetallic ore[J]. Nonferrous Metals Science and Engineering, 2013,4(5):79-84. (石贵明, 吴彩斌, 肖良, 等. 柿竹园钨多金属矿优化磨矿系统实验室研究[J]. 有色金属科学与工程, 2013,4(5):79-84.SHI G M, WU C B, XIAO L, et al. Experimental study of grinding system optimization for a tungsten polymetallic ore[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 79-84. [7] JAVAD K S M, BARANI K, REZAEI B. The effect of microwave treatment on dry grinding kinetics of iron ore[J]. Mineral Processing and Extractive Metallurgy Review, 2012,33(3):159-169. doi: 10.1080/08827508.2011.562947 [8] WANG J P, JIANG T, LIU Y J, et al. Experiment of microwave-assisted grinding on vanadium titano-magnetite[J]. Journal of Northeastern University (Natural Science), 2017,38(11):1559-1563. (王俊鹏, 姜涛, 刘亚静, 等. 钒钛磁铁矿微波助磨实验[J]. 东北大学学报(自然科学版), 2017,38(11):1559-1563. doi: 10.12068/j.issn.1005-3026.2017.11.009WANG J P, JIANG T, LIU Y J, et al. Experiment of microwave-assisted grinding on vanadium titano-magnetite[J]. Journal of Northeastern University (Natural Science), 2017, 38(11): 1559-1563. doi: 10.12068/j.issn.1005-3026.2017.11.009 [9] CAO J C, LIU L, HAN Y X. Grinding kinetics of Anshan type hematite ores in a ball mill[J]. Journal of Northeastern University (Natural Science), 2016,37(12):1764-1768. (曹进成, 刘磊, 韩跃新. 鞍山式赤铁矿石球磨磨矿动力学研究[J]. 东北大学学报(自然科学版), 2016,37(12):1764-1768. doi: 10.12068/j.issn.1005-3026.2016.12.020CAO J C, LIU L, HAN Y X. Grinding kinetics of Anshan type hematite ores in a ball mill[J]. Journal of Northeastern University (Natural Science), 2016, 37(12): 1764-1768. doi: 10.12068/j.issn.1005-3026.2016.12.020 [10] YAN F M, AI G H, WU C B, et al. On the grinding kinetics of tungsten ores[J]. Mining and Metallurgical Engineering, 2015,6(4):80-85. (鄢发明, 艾光华, 吴彩斌, 等. 钨矿石磨矿动力学研究[J]. 有色金属科学与工程, 2015,6(4):80-85.YAN F M, AI G H, WU C B, et al. On the grinding kinetics of tungsten ores[J]. Mining and Metallurgical Engineering, 2015, 6(4): 80-85. [11] ZHAO R C, HAN Y X, HE M Z, et al. Grinding kinetics of quartz and chlorite in wet ball milling[J]. Powder Technology, 2017,305(1):418-425. [12] WANG J P. Fundamental research on microwave-assisted grinding and separation technology for vanadium-titanium magnetite[D]. Shenyang: Northeastern University, 2020. (王俊鹏. 钒钛磁铁矿微波热力辅助磨选技术基础研究[D]. 沈阳: 东北大学, 2020.WANG J P. Fundamental research on microwave-assisted grinding and separation technology for vanadium-titanium magnetite[D]. Shenyang: Northeastern University, 2020. [13] LI L, YANG C. Basic study on vanadic titanomagnetite milling in Panzhihua[J]. Iron Steel Vanadium Titanium, 2011,32(1):29-33. (李亮, 杨成. 攀枝花某地钒钛磁铁矿选矿基础试验研究[J]. 钢铁钒钛, 2011,32(1):29-33. doi: 10.7513/j.issn.1004-7638.2011.01.006LI L, YANG C. Basic study on vanadic titanomagnetite milling in Panzhihua[J]. Iron Steel Vanadium Titanium, 2011, 32(1): 29-33. doi: 10.7513/j.issn.1004-7638.2011.01.006 [14] RUBIO J, SOUZA M L, SMITH R W. Overview of flotation as a wastewater treatment technique[J]. Minerals Engineering, 2002,15(3):139-155. doi: 10.1016/S0892-6875(01)00216-3 -