Study on the effect of multi area controllable electromagnetic braking on behavior of non-uniform molten steel flow and steel-slag interface in the mold
-
摘要: 连铸过程中,因水口堵塞引发的结晶器内部钢液流动畸变是影响铸件质量和生产效率的关键因素之一。为解决此问题,文中提出多区域独立可控电磁制动技术,以改善钢液流态,减少水口堵塞带来的负面影响。首先,选定板坯结晶器作为研究对象,构建电磁连铸结晶器内钢液流动与渣金界面行为分析模型;其次,对比分析无电磁制动、现行全幅一段电磁制动以及多区域独立可控电磁制动作用下,结晶器内部钢液非均匀流动特性与渣金界面的演变规律。模拟结果表明,在单侧水口发生25%堵塞的情况下,相较于全幅一段电磁制动,多区域独立可控电磁制动所产生的制动效应对非堵塞侧结晶器内钢液的流动控制效果更显著。与未施加电磁制动时相比,当施加的磁场强度为0.3 T时,全幅一段电磁制动结晶器内非堵塞侧钢液表面最大流速和界面最大波高分别增加了16.7%和1.6%,而多区域独立可控电磁制动结晶器内非堵塞侧钢液表面最大流速和界面最大波高分别降低了16.7%和48.4%。可见,采用多区域独立可控电磁制动可实现分区域控制结晶器内部钢液流动,从而改善流场的对称性,并减少因水口堵塞引起的流动不对称现象。Abstract: In the process of continuous casting, the distortion of molten steel flow in mold caused by nozzle clogging is a key factor affecting the quality and production efficiency of castings. To solve this problem, a multi area controllable electromagnetic braking (MAC-EMBr) technology is proposed to improve flow state of molten steel and reduce negative impact of nozzle clogging. Firstly, a slab mold is selected as the research object to establish an analytical model of molten steel flow and steel-slag interface behavior in electromagnetic continuous casting mold. Secondly, the fluid-flow-related phenomena of three casting cases in the slab mold, i.e., No-EMBr, Ruler-EMBr, and MAC-EMBr, are further investigated numerically to evaluate the metallurgical capability of the MAC-EMBr, including the non-uniform flow characteristics of molten steel and the evolution pattern of steel-slag interface inside the mold. According to the simulation results, with a 25% blockage rate of a single-side nozzle, the braking effect of the Ruler-EMBr on the backflow in the upper region of the mold is not remarkably. In detail, when the magnetic flux density reaches 0.3 T, the maximum magnitude of the surface velocity and the maximum amplitude of the level fluctuation on non-clogging side with the Ruler-EMBr are 16.7% and 1.6% higher than those with No-EMBr, respectively. This is not conducive to the stability of steel-slag interface in the mold. However, under the same magnetic flux density as the Ruler-EMBr, the application of MAC-EMBr has great potential to suppress the upward backflow on the non-clogging side. In comparison with No-EMBr, the maximum magnitude of the surface velocity and the maximum amplitude of the level fluctuation with the MAC-EMBr are decreased by 16.7% and 48.4%, respectively. As a result, the flow of molten steel in the mold can be well controlled in different regions with the MAC-EMBr, so as to improve the symmetry of the flow field and reduce the flow asymmetry caused by nozzle clogging.
-
表 1 板坯结晶器计算参数
Table 1. Computational parameters of slab mold
铸坯断面/(mm×mm) 结晶器长度/mm 结晶器计算域/mm 水口双侧孔尺寸/mm 水口浸入深度/mm 水口内径/mm 拉坯速度/(m∙min−1) 1450 ×230800 4000 65×80 170 80 1.8 钢液密度/(kg∙m−3) 钢液黏度/(Pa∙s) 钢液电导率/(S∙m−1) 钢液磁导率/(H∙m−1) 液渣密度/(kg∙m−3) 表面张力/(N∙m−1) 磁场强度/T 7020 0.0062 7.14×105 1.26×106 3500 1.2 0.1 0.2 0.3 表 2 计算域内不同网格节点数的误差统计结果
Table 2. Statistic results of error with different grid node numbers in the computational domain
网格 M1 M2 M3 网格节点数 490,000 735,000 1,102,500 $ {h_{{{\text{M}}_i}}} $ 25.8 25.2 24.9 $ {\delta _h} = {{\left| {{h_{{{\text{M}}_i}}} - {h_{{{\text{M}}_1}}}} \right|} \mathord{\left/ {\vphantom {{\left| {{h_{{{\text{M}}_i}}} - {h_{{{\text{M}}_1}}}} \right|} {{h_{{{\text{M}}_1}}}}}} \right. } {{h_{{{\text{M}}_1}}}}} $ 0 2.3% 3.5% 注:表中h为渣金界面波动高度最大值,即波峰与波谷间的垂直距离,mm;δh为渣金界面波动高度的相对误差,%。 -
[1] BAO Y, LI Z, ZHANG L, et al. Asymmetric flow control in a slab mold through a new type of electromagnetic field arrangement[J]. Processes, 2021,9(11):1988-2000. doi: 10.3390/pr9111988 [2] WANG T, LI K, LI S, et al. Asymmetric flow behavior of molten steel in thin slab continuous casting mold[J]. Metall. Mater. Trans. B, 2023,54(3):3542-3553. [3] WANG Z, LIU J, CUI H, et al. Effect of SEN asymmetric clogging on mold level fluctuation and mold slag distribution during continuous casting[J]. Metall. Mater. Trans. B, 2024,55(4):2932-2947. doi: 10.1007/s11663-024-03156-5 [4] REN Z M, LEI Z S, LI C J, et al. New study and development on electromagnetic field technology in metallurgical processes[J]. Acta Metallurgica Sinica, 2020,56(4):583-600. (任忠鸣, 雷作胜, 李传军, 等. 电磁冶金技术研究新进展[J]. 金属学报, 2020,56(4):583-600.REN Z M, LEI Z S, LI C J, et al. New study and development on electromagnetic field technology in metallurgical processes[J]. Acta Metallurgica Sinica, 2020, 56(4): 583-600. [5] ZHU M Y. Some considerations for new generation of high-efficiency continuous casting technology development[J]. Iron and steel, 2019,54(8):21-36. (朱苗勇. 新一代高效连铸技术发展思考[J]. 钢铁, 2019,54(8):21-36.ZHU M Y. Some considerations for new generation of high-efficiency continuous casting technology development[J]. Iron and steel, 2019, 54(8): 21-36. [6] LUO S, YANG Y W, WANG W L, et al. Development of electromagnetic flow control technology for high speed casting mold[J]. Journal of Materials and Metallurgy, 2023,22(1):1-22. (罗森, 杨宇威, 王卫领, 等. 高拉速连铸结晶器电磁控流技术发展[J]. 材料与冶金学报, 2023,22(1):1-22.LUO S, YANG Y W, WANG W L, et al. Development of electromagnetic flow control technology for high speed casting mold[J]. Journal of Materials and Metallurgy, 2023, 22(1): 1-22. [7] XU L, PEI Q W, LI YANG, et al. Investigation of multiphase transport behaviors in a FTSR mold during electromagnetic continuous casting process[J]. Iron Steel Vanadium Titanium, 2023,44(4):125-134. (许琳, 裴群武, 李阳, 等. 电磁连铸过程FTSR结晶器多相传输行为的研究[J]. 钢铁钒钛, 2023,44(4):125-134.XU L, PEI Q W, LI YANG, et al. Investigation of multiphase transport behaviors in a FTSR mold during electromagnetic continuous casting process[J]. Iron Steel Vanadium Titanium, 2023, 44(4): 125-134. [8] SCHURMANN D, GLAVINIC´ I, WILLERS B, et al. Impact of the electromagnetic brake position on the flow structure in a slab continuous casting mold: An experimental parameter study[J]. Metall. Mater. Trans. B, 2020,51(1):61-78. doi: 10.1007/s11663-019-01721-x [9] XU L, PEI Q W, LI N, et al. Investigation of flow and heat transfer characteristics in CSP mold with electromagnetic braking[J]. Journal of Thermal Science and Technology, 2024,23(1):15-23. (许琳, 裴群武, 李楠, 等. 电磁制动下CSP结晶器内流动与传热特性研究[J]. 热科学与技术, 2024,23(1):15-23.XU L, PEI Q W, LI N, et al. Investigation of flow and heat transfer characteristics in CSP mold with electromagnetic braking[J]. Journal of Thermal Science and Technology, 2024, 23(1): 15-23. [10] SARKAR S, SINGH V, AJMANI S K, et al. Effect of double ruler magnetic field in controlling meniscus flow and turbulence intensity distribution in continuous slab casting mold[J]. ISIJ Int., 2016,56(12):2181-2190. doi: 10.2355/isijinternational.ISIJINT-2016-313 [11] THOMAS B G, SINGH R, VANKA S P, et al. Effect of single-ruler electromagnetic braking (EMBr) location on transient flow in continuous casting[J]. Journal for Manufacturing Science & Production, 2015,15(1):93-104. [12] XU L, PEI Q, HAN Z, et al. Influences of the braking effect of ruler EMBr on molten steel flow and steel–slag interface fluctuation in a continuous casting mold[J]. Processes, 2023,11(1):33-49. [13] VAKHRUSHEV A, KARIMI-SIBAKI E, BOHACEK J, et al. Impact of submerged entry nozzle (SEN) immersion depth on meniscus flow in continuous casting mold under electromagnetic brake (EMBr)[J]. Metals, 2023,13(3):444-464. doi: 10.3390/met13030444 [14] LI Z, ZHANG L T, MA D Z, et al. A narrative review: the electromagnetic field arrangement and the “braking” effect of electromagnetic brake (EMBr) technique in slab continuous casting[J]. Metall. Res. Technol., 2021,118(2):218-234. doi: 10.1051/metal/2021016 [15] XU L, WANG E, KARCHER C, et al. Numerical simulation of the effects of horizontal and vertical EMBr on jet flow and mold level fluctuation in continuous casting[J]. Metall. Mater. Trans. B, 2018,49(5):2779-2793. doi: 10.1007/s11663-018-1342-4 [16] LI Z, WANG E, ZHANG L, et al. Influence of vertical electromagnetic brake on the steel slag interface behavior in a slab mold[J]. Metall. Mater. Trans. B, 2017,48(4):2389-2402. [17] XU L, KARCHER C, WANG E. Numerical simulation of melt flow, heat transfer and solidification in CSP continuous casting mold with vertical-combined electromagnetic braking[J]. Metall. Mater. Trans. B, 2023,54(4):1646-1664. doi: 10.1007/s11663-023-02784-7 [18] XU L, HAN Z, KARCHER C, et al. Melt flow, heat transfer and solidification in a flexible thin slab continuous casting mold with vertical-combined electromagnetic braking[J]. J. Iron Steel Res. Int., 2024,31(2):401-415. doi: 10.1007/s42243-023-01062-9 -