中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多区域独立可控电磁制动对结晶器内钢液非均匀流动与渣金界面行为影响的研究

许琳 裴群武 李楠 刘聪 徐鹤源

许琳, 裴群武, 李楠, 刘聪, 徐鹤源. 多区域独立可控电磁制动对结晶器内钢液非均匀流动与渣金界面行为影响的研究[J]. 钢铁钒钛, 2025, 46(1): 112-123. doi: 10.7513/j.issn.1004-7638.2025.01.017
引用本文: 许琳, 裴群武, 李楠, 刘聪, 徐鹤源. 多区域独立可控电磁制动对结晶器内钢液非均匀流动与渣金界面行为影响的研究[J]. 钢铁钒钛, 2025, 46(1): 112-123. doi: 10.7513/j.issn.1004-7638.2025.01.017
XU Lin, PEI Qunwu, LI Nan, LIU Cong, XU Heyuan. Study on the effect of multi area controllable electromagnetic braking on behavior of non-uniform molten steel flow and steel-slag interface in the mold[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 112-123. doi: 10.7513/j.issn.1004-7638.2025.01.017
Citation: XU Lin, PEI Qunwu, LI Nan, LIU Cong, XU Heyuan. Study on the effect of multi area controllable electromagnetic braking on behavior of non-uniform molten steel flow and steel-slag interface in the mold[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 112-123. doi: 10.7513/j.issn.1004-7638.2025.01.017

多区域独立可控电磁制动对结晶器内钢液非均匀流动与渣金界面行为影响的研究

doi: 10.7513/j.issn.1004-7638.2025.01.017
基金项目: 沈阳市科技人才专项资助项目(RC230046);辽宁省博士科研启动基金项目(2022-BS-224);辽宁省教育厅科研项目(LJKQZ20222282,LJKMZ20221713)。
详细信息
    通讯作者:

    许琳,1989年出生,女,黑龙江嫩江人,博士研究生,副教授,主要从事电磁流体力学工作,E-mail:lin_xu1989@163.com

  • 中图分类号: TF777.1

Study on the effect of multi area controllable electromagnetic braking on behavior of non-uniform molten steel flow and steel-slag interface in the mold

  • 摘要: 连铸过程中,因水口堵塞引发的结晶器内部钢液流动畸变是影响铸件质量和生产效率的关键因素之一。为解决此问题,文中提出多区域独立可控电磁制动技术,以改善钢液流态,减少水口堵塞带来的负面影响。首先,选定板坯结晶器作为研究对象,构建电磁连铸结晶器内钢液流动与渣金界面行为分析模型;其次,对比分析无电磁制动、现行全幅一段电磁制动以及多区域独立可控电磁制动作用下,结晶器内部钢液非均匀流动特性与渣金界面的演变规律。模拟结果表明,在单侧水口发生25%堵塞的情况下,相较于全幅一段电磁制动,多区域独立可控电磁制动所产生的制动效应对非堵塞侧结晶器内钢液的流动控制效果更显著。与未施加电磁制动时相比,当施加的磁场强度为0.3 T时,全幅一段电磁制动结晶器内非堵塞侧钢液表面最大流速和界面最大波高分别增加了16.7%和1.6%,而多区域独立可控电磁制动结晶器内非堵塞侧钢液表面最大流速和界面最大波高分别降低了16.7%和48.4%。可见,采用多区域独立可控电磁制动可实现分区域控制结晶器内部钢液流动,从而改善流场的对称性,并减少因水口堵塞引起的流动不对称现象。
  • 图  1  多区域独立可控电磁制动装置示意

    (a) 主视图;(b) 左视图

    Figure  1.  Schematic diagram of MAC-EMBr device

    图  2  试验测量和数值模拟结晶器内液面波动结果

    (a) 试验测量结果;(b) 试验和模拟比对结果

    Figure  2.  Experimental measurement and numerical simulation of level fluctuation heights in the mold

    图  3  多区域独立可控电磁制动结晶器内磁场强度分布

    (a) 结晶器内磁场强度;(b) 沿结晶器高度方向宽面中心截面磁场强度

    Figure  3.  Distribution of magnetic field intensity in the mold with MAC-EMBr

    图  4  多区域独立可控电磁制动结晶器宽面中心截面钢液速度分布

    Figure  4.  Velocity distribution in the central section of wide surface in the mold with MAC-EMBr

    (a) BMAC-I=BMAC-II=0 T;(b) BMAC-I=0.1 T,BMAC-II=0.3 T;(c) BMAC-I=0.2 T,BMAC-II=0.3 T;(d) BMAC-I=BMAC-II=0.3 T

    图  5  多区域独立可控电磁制动结晶器内钢液速度等直面图

    Figure  5.  Isosurface diagram of velocity in the mold with MAC-EMBr

    (a) BMAC-I=BMAC-II=0 T;(b) BMAC-I=0.1 T,BMAC-II=0.3 T;(c) BMAC-I=0.2 T,BMAC-II=0.3 T;(d) BMAC-I=BMAC-II=0.3 T

    图  6  多区域独立可控电磁制动结晶器内钢液表面速度分布云图

    Figure  6.  Nephogram of surface velocity in the mold with MAC-EMBr

    (a) BMAC-I=BMAC-II=0 T;(b) BMAC-I=0.1 T,BMAC-II=0.3 T;(c) BMAC-I=0.2 T,BMAC-II=0.3 T;(d) BMAC-I=BMAC-II=0.3 T

    图  7  多区域独立可控电磁制动结晶器内钢液表面速度分布

    Figure  7.  Surface velocity distribution in the mold with MAC-EMBr

    图  8  多区域独立可控电磁制动结晶器内渣金界面波动云图

    Figure  8.  Nephogram of steel slag interface fluctuation in the mold with MAC-EMBr

    (a) Bleft = Bright = 0.0 T;(b) Bleft = 0.1 T,Bright = 0.3 T;(c) Bleft = 0.2 T,Bright = 0.3 T;(d) Bleft = 0.3 T,Bright = 0.3 T

    图  9  多区域独立可控电磁制动结晶器内渣金界面波动高度

    Figure  9.  Fluctuation height of steel slag interface in the mold with MAC-EMBr

    图  10  结晶器宽面中心截面钢液速度分布

    (a) 无磁场;(b) 全幅一段电磁制动;(c) 多区域独立可控电磁制动

    Figure  10.  Velocity distribution in the central section of wide surface in the mold under different braking conditions

    图  11  结晶器内钢液速度等直面图

    (a) 无磁场;(b) 全幅一段电磁制动;(c) 多区域独立可控电磁制动

    Figure  11.  Isosurface diagram of velocity in the mold under different braking conditions

    图  12  结晶器内钢液表面速度分布云图

    (a) 无磁场;(b) 全幅一段电磁制动;(c) 多区域独立可控电磁制动

    Figure  12.  Nephogram of surface velocity in the mold under different braking conditions

    图  13  结晶器内钢液表面速度分布

    Figure  13.  Surface velocity distribution in the mold

    图  14  结晶器内渣金界面波动云图

    (a) 无磁场;(b) 全幅一段电磁制动;(c) 多区域独立可控电磁制动

    Figure  14.  Nephogram of steel slag interface fluctuation in the mold under different braking conditions

    图  15  结晶器内渣金界面波动高度

    Figure  15.  Fluctuation height of steel slag interface in the mold

    表  1  板坯结晶器计算参数

    Table  1.   Computational parameters of slab mold

    铸坯断面/(mm×mm) 结晶器长度/mm 结晶器计算域/mm 水口双侧孔尺寸/mm 水口浸入深度/mm 水口内径/mm 拉坯速度/(m∙min−1)
    1450×230 800 4000 65×80 170 80 1.8
    钢液密度/(kg∙m−3) 钢液黏度/(Pa∙s) 钢液电导率/(S∙m−1) 钢液磁导率/(H∙m−1) 液渣密度/(kg∙m−3) 表面张力/(N∙m−1) 磁场强度/T
    7020 0.0062 7.14×105 1.26×106 3500 1.2 0.1 0.2 0.3
    下载: 导出CSV

    表  2  计算域内不同网格节点数的误差统计结果

    Table  2.   Statistic results of error with different grid node numbers in the computational domain

    网格M1M2M3
    网格节点数490,000735,0001,102,500
    $ {h_{{{\text{M}}_i}}} $25.825.224.9
    $ {\delta _h} = {{\left| {{h_{{{\text{M}}_i}}} - {h_{{{\text{M}}_1}}}} \right|} \mathord{\left/ {\vphantom {{\left| {{h_{{{\text{M}}_i}}} - {h_{{{\text{M}}_1}}}} \right|} {{h_{{{\text{M}}_1}}}}}} \right. } {{h_{{{\text{M}}_1}}}}} $02.3%3.5%
    注:表中h为渣金界面波动高度最大值,即波峰与波谷间的垂直距离,mm;δh为渣金界面波动高度的相对误差,%。
    下载: 导出CSV
  • [1] BAO Y, LI Z, ZHANG L, et al. Asymmetric flow control in a slab mold through a new type of electromagnetic field arrangement[J]. Processes, 2021,9(11):1988-2000. doi: 10.3390/pr9111988
    [2] WANG T, LI K, LI S, et al. Asymmetric flow behavior of molten steel in thin slab continuous casting mold[J]. Metall. Mater. Trans. B, 2023,54(3):3542-3553.
    [3] WANG Z, LIU J, CUI H, et al. Effect of SEN asymmetric clogging on mold level fluctuation and mold slag distribution during continuous casting[J]. Metall. Mater. Trans. B, 2024,55(4):2932-2947. doi: 10.1007/s11663-024-03156-5
    [4] REN Z M, LEI Z S, LI C J, et al. New study and development on electromagnetic field technology in metallurgical processes[J]. Acta Metallurgica Sinica, 2020,56(4):583-600. (任忠鸣, 雷作胜, 李传军, 等. 电磁冶金技术研究新进展[J]. 金属学报, 2020,56(4):583-600.

    REN Z M, LEI Z S, LI C J, et al. New study and development on electromagnetic field technology in metallurgical processes[J]. Acta Metallurgica Sinica, 2020, 56(4): 583-600.
    [5] ZHU M Y. Some considerations for new generation of high-efficiency continuous casting technology development[J]. Iron and steel, 2019,54(8):21-36. (朱苗勇. 新一代高效连铸技术发展思考[J]. 钢铁, 2019,54(8):21-36.

    ZHU M Y. Some considerations for new generation of high-efficiency continuous casting technology development[J]. Iron and steel, 2019, 54(8): 21-36.
    [6] LUO S, YANG Y W, WANG W L, et al. Development of electromagnetic flow control technology for high speed casting mold[J]. Journal of Materials and Metallurgy, 2023,22(1):1-22. (罗森, 杨宇威, 王卫领, 等. 高拉速连铸结晶器电磁控流技术发展[J]. 材料与冶金学报, 2023,22(1):1-22.

    LUO S, YANG Y W, WANG W L, et al. Development of electromagnetic flow control technology for high speed casting mold[J]. Journal of Materials and Metallurgy, 2023, 22(1): 1-22.
    [7] XU L, PEI Q W, LI YANG, et al. Investigation of multiphase transport behaviors in a FTSR mold during electromagnetic continuous casting process[J]. Iron Steel Vanadium Titanium, 2023,44(4):125-134. (许琳, 裴群武, 李阳, 等. 电磁连铸过程FTSR结晶器多相传输行为的研究[J]. 钢铁钒钛, 2023,44(4):125-134.

    XU L, PEI Q W, LI YANG, et al. Investigation of multiphase transport behaviors in a FTSR mold during electromagnetic continuous casting process[J]. Iron Steel Vanadium Titanium, 2023, 44(4): 125-134.
    [8] SCHURMANN D, GLAVINIC´ I, WILLERS B, et al. Impact of the electromagnetic brake position on the flow structure in a slab continuous casting mold: An experimental parameter study[J]. Metall. Mater. Trans. B, 2020,51(1):61-78. doi: 10.1007/s11663-019-01721-x
    [9] XU L, PEI Q W, LI N, et al. Investigation of flow and heat transfer characteristics in CSP mold with electromagnetic braking[J]. Journal of Thermal Science and Technology, 2024,23(1):15-23. (许琳, 裴群武, 李楠, 等. 电磁制动下CSP结晶器内流动与传热特性研究[J]. 热科学与技术, 2024,23(1):15-23.

    XU L, PEI Q W, LI N, et al. Investigation of flow and heat transfer characteristics in CSP mold with electromagnetic braking[J]. Journal of Thermal Science and Technology, 2024, 23(1): 15-23.
    [10] SARKAR S, SINGH V, AJMANI S K, et al. Effect of double ruler magnetic field in controlling meniscus flow and turbulence intensity distribution in continuous slab casting mold[J]. ISIJ Int., 2016,56(12):2181-2190. doi: 10.2355/isijinternational.ISIJINT-2016-313
    [11] THOMAS B G, SINGH R, VANKA S P, et al. Effect of single-ruler electromagnetic braking (EMBr) location on transient flow in continuous casting[J]. Journal for Manufacturing Science & Production, 2015,15(1):93-104.
    [12] XU L, PEI Q, HAN Z, et al. Influences of the braking effect of ruler EMBr on molten steel flow and steel–slag interface fluctuation in a continuous casting mold[J]. Processes, 2023,11(1):33-49.
    [13] VAKHRUSHEV A, KARIMI-SIBAKI E, BOHACEK J, et al. Impact of submerged entry nozzle (SEN) immersion depth on meniscus flow in continuous casting mold under electromagnetic brake (EMBr)[J]. Metals, 2023,13(3):444-464. doi: 10.3390/met13030444
    [14] LI Z, ZHANG L T, MA D Z, et al. A narrative review: the electromagnetic field arrangement and the “braking” effect of electromagnetic brake (EMBr) technique in slab continuous casting[J]. Metall. Res. Technol., 2021,118(2):218-234. doi: 10.1051/metal/2021016
    [15] XU L, WANG E, KARCHER C, et al. Numerical simulation of the effects of horizontal and vertical EMBr on jet flow and mold level fluctuation in continuous casting[J]. Metall. Mater. Trans. B, 2018,49(5):2779-2793. doi: 10.1007/s11663-018-1342-4
    [16] LI Z, WANG E, ZHANG L, et al. Influence of vertical electromagnetic brake on the steel slag interface behavior in a slab mold[J]. Metall. Mater. Trans. B, 2017,48(4):2389-2402.
    [17] XU L, KARCHER C, WANG E. Numerical simulation of melt flow, heat transfer and solidification in CSP continuous casting mold with vertical-combined electromagnetic braking[J]. Metall. Mater. Trans. B, 2023,54(4):1646-1664. doi: 10.1007/s11663-023-02784-7
    [18] XU L, HAN Z, KARCHER C, et al. Melt flow, heat transfer and solidification in a flexible thin slab continuous casting mold with vertical-combined electromagnetic braking[J]. J. Iron Steel Res. Int., 2024,31(2):401-415. doi: 10.1007/s42243-023-01062-9
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  49
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-06
  • 刊出日期:  2025-02-27

目录

    /

    返回文章
    返回