中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含Ce 7Mo超级奥氏体不锈钢凝固组织及夹杂物分析研究

王旗 杜越 王丽君 张威 郑亚旭 鲁素玲 朱立光

王旗, 杜越, 王丽君, 张威, 郑亚旭, 鲁素玲, 朱立光. 含Ce 7Mo超级奥氏体不锈钢凝固组织及夹杂物分析研究[J]. 钢铁钒钛, 2025, 46(1): 124-132. doi: 10.7513/j.issn.1004-7638.2025.01.018
引用本文: 王旗, 杜越, 王丽君, 张威, 郑亚旭, 鲁素玲, 朱立光. 含Ce 7Mo超级奥氏体不锈钢凝固组织及夹杂物分析研究[J]. 钢铁钒钛, 2025, 46(1): 124-132. doi: 10.7513/j.issn.1004-7638.2025.01.018
WANG Qi, DU Yue, WANG Lijun, ZHANG Wei, ZHENG Yaxu, LU Suling, ZHU Liguang. Solidification microstructure evolution and inclusion analysis of Ce-containing 7Mo super-austenitic stainless steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 124-132. doi: 10.7513/j.issn.1004-7638.2025.01.018
Citation: WANG Qi, DU Yue, WANG Lijun, ZHANG Wei, ZHENG Yaxu, LU Suling, ZHU Liguang. Solidification microstructure evolution and inclusion analysis of Ce-containing 7Mo super-austenitic stainless steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 124-132. doi: 10.7513/j.issn.1004-7638.2025.01.018

含Ce 7Mo超级奥氏体不锈钢凝固组织及夹杂物分析研究

doi: 10.7513/j.issn.1004-7638.2025.01.018
基金项目: 河北省自然科学基金(E2021208017);国家自然科学基金(52204341);河北省钢铁联合基金(E2021208006)。
详细信息
    作者简介:

    王旗,1991年出生,男,河北邢台人,讲师,博士,研究方向为氧化物冶金、稀土在钢中应用、特殊钢组织与性能调控,E-mail:xtwq1991@163.com

    通讯作者:

    王丽君,1979年生,女,山西太原人,教授,博导,研究方向为高品质特殊钢绿色冶炼制造、能源材料开发研究,E-mail:lijunwang@ustb.edu.cn

  • 中图分类号: TF771

Solidification microstructure evolution and inclusion analysis of Ce-containing 7Mo super-austenitic stainless steel

  • 摘要: 采用稀土Ce处理是超级奥氏体不锈钢凝固组织调控研究的热点,系统分析了中试500 kg级Ce处理7Mo超级奥氏体不锈钢凝固相组织、夹杂物演变、元素偏析行为,为Ce处理7Mo超级奥氏体不锈钢提供理论依据。结果表明,7Mo超级奥氏体不锈钢非平衡凝固路径为L→L+γ→L+γ+δ→L+γ+δ+σ→L+γ+σ→L+γ+σ+Cr2N。降温凝固过程中存在中间相δ相,凝固末期δ相会分解成σ相和γ2相。钢中主要析出第二相为富Cr和Mo的σ相,铸态凝固组织由奥氏体相和σ相组成。7Mo超级奥氏体不锈钢Ce处理后,铸锭中的夹杂物主要为AlCeO3和Al11O18Ce组成的复合夹杂物,其具有低错配度AlCeO3结构,可以作为异质形核核心。降温凝固过程中Al脱氧能力增强,脱氧反应平衡被打破,导致Al11O18Ce包裹AlCeO3形貌的夹杂物生成。铸锭芯部微观晶粒粗大,枝晶间微观偏析严重,微观晶粒尺寸是影响枝晶间微观偏析的核心因素,微观凝固组织晶粒尺寸降低可以有效改善晶粒内部各元素的偏析程度,降低枝晶间σ相中Mo、Cr含量。
  • 图  1  7Mo超奥钢铸锭观察取样示意

    Figure  1.  Schematic diagram for observation and sampling of 7Mo super austenitic stainless steel

    图  2  7Mo超奥钢非平衡凝固相图

    Figure  2.  Non-equilibrium solidification phase diagram of 7Mo super austenitic stainless steel

    图  3  7Mo不锈钢DTA降温曲线

    Figure  3.  DTA cooling curve of 7Mo stainless steel

    图  4  7 Mo超奥钢铸锭组织SEM和EDS结果

    Figure  4.  SEM and EDS results on σ phase in 7Mo super austenitic stainless steel ingot

    图  5  7Mo超奥钢XRD衍射结果

    Figure  5.  XRD diffraction results of 7Mo super austenitic stainless steel

    图  6  钢中典型夹杂物化学成分

    Figure  6.  Chemical compositions of typical inclusions in steel

    图  7  钢中典型夹杂物成分组成三元图

    Figure  7.  Ternary diagram of composition of typical inclusions in steel

    图  8  铸坯中夹杂物分布情况

    (a)视场1;(b)视场2

    Figure  8.  Distribution of inclusions in casting billet

    图  9  7Mo超奥钢基于Factsage的热力学计算结果

    (a)Al脱氧能力与Cr含量关系; (b)Ce脱氧能力与Cr含量关系; (c)Al、Ce脱氧能力与温度的关系; (d)凝固过程中钢中夹杂物演变

    Figure  9.  Thermodynamic calculation results of 7Mo super austenitic stainless steel based on FactSage

    图  10  铸锭低倍组织与主要合金元素偏析程度

    (a)铸锭宏观低倍组织; (b)铸锭不同位置Mo、Cr元素宏观偏析

    Figure  10.  Macrostructure of ingots and degree of segregation of main alloy elements

    图  11  铸锭不同位置组织形貌及晶粒数量密度和平均尺寸与σ相析出情况关系

    (a)铸锭不同位置SEM结果; (b)铸锭不同位置OM结果; (c)铸锭不同位置晶粒密度和平均尺寸; (d)σ相平均宽度和体积分数与晶粒平均尺寸关系

    Figure  11.  The relationship between microstructure, grain number density and average size of ingot at different locations and σ precipitation

    图  12  σ相中合金元素偏析程度和晶粒内部元素偏析程度与晶粒平均尺寸关系

    (a)σ相中Mo元素偏析度; (b)σ相中Cr元素偏析度; (c)晶粒内部Cr元素偏析度; (d)晶粒内部Mo元素偏析度

    Figure  12.  The relationship among degree of segregation of alloying elements in σ phase, degree of segregation of elements in grain and the average grain size segregation degree

    表  1  7Mo超奥钢化学成分

    Table  1.   Chemical composition of 7Mo super austenitic stainless steel %

    CrNiMoCuSiMnCNSPAlCeTOFe
    24.0718.977.220.470.052.970.00730.42<0.01<0.010.030.010.0055Bal
    下载: 导出CSV

    表  2  铸坯不同位置夹杂物特征

    Table  2.   Characteristics of inclusions at different positions of billets

    铸坯位置数量密度/(个·mm−2平均尺寸/μm
    边缘62.33.0
    中心28.23.8
    下载: 导出CSV
  • [1] ZHANG S C. Manufacture, microstructure and properties of super austenitic stainless steel S32654[D]. Shenyang: Northeastern University, 2022. (张树才. 超级奥氏体不锈钢S32654的制备及组织与性能研究[D]. 沈阳: 东北大学, 2022.

    ZHANG S C. Manufacture, microstructure and properties of super austenitic stainless steel S32654[D]. Shenyang: Northeastern University, 2022.
    [2] LIAO L H. Research on microstructure and properties of S32654 super austenitic stainless steel[D]. Beijing: University of Science and Technology Beijing, 2023. (廖露海. 超级奥氏体不锈钢S32654组织与性能研究[D]. 北京: 北京科技大学, 2023.

    LIAO L H. Research on microstructure and properties of S32654 super austenitic stainless steel[D]. Beijing: University of Science and Technology Beijing, 2023.
    [3] KIM W Y, NAM G J, KIM S Y. Evolution of non-metallic inclusions in Al-killed stainless steelmaking[J]. Metall Mater Trans B, 2021,52:1508-1520. doi: 10.1007/s11663-021-02119-4
    [4] LIU W Q, WANG L J, ZHANG F C, et al. Review on development and second phase regulation of super austenitic stainless steel[J]. Journal of Iron and Steel Research, 2023,35(8):907-927. (刘文强, 王丽君, 张福成, 等. 超级奥氏体不锈钢发展及第二相调控研究现状[J]. 钢铁研究学报, 2023,35(8):907-927.

    LIU W Q, WANG L J, ZHANG F C, et al. Review on development and second phase regulation of super austenitic stainless steel[J]. Journal of Iron and Steel Research, 2023, 35(8): 907-927.
    [5] HAO Y S. Research on alloying element segregation behavior and microstructure evolution of super austenitic stainless steel[D]. Shenyang: Northeastern University, 2022. (郝燕森. 超级奥氏体不锈钢合金元素偏析行为与显微组织演变规律研究[D]. 沈阳: 东北大学, 2022.

    HAO Y S. Research on alloying element segregation behavior and microstructure evolution of super austenitic stainless steel[D]. Shenyang: Northeastern University, 2022.
    [6] XIAO J, ZHANG Y, ZHANG W, et al. Precipitation mechanism of σ phase in S32654 super austenitic stainless steel[J]. Materials Letters, 2023,349:7871-7881.
    [7] YU J T. Research on effect of cerium on hot deformation behavior of super austenitic stainless steel 654SMO[D]. Shenyang: Northeastern University, 2020. (禹江涛. 稀土铈对超级奥氏体不锈钢654SMO热变形行为的影响研究[D]. 沈阳: 东北大学, 2020.

    YU J T. Research on effect of cerium on hot deformation behavior of super austenitic stainless steel 654SMO[D]. Shenyang: Northeastern University, 2020.
    [8] XU S G, HE J S, ZHANG R Z, et al. Hot deformation behaviors and dynamic softening mechanisms of 7Mo super-austenitic stainless steel with high stacking fault energy[J]. Journal of Materials Research and Technology, 2023,23:1738-1752. doi: 10.1016/j.jmrt.2023.01.108
    [9] ZHANG S C, YU J T, LI H B, et al. Refinement mechanism of cerium addition on solidification structure and sigma phase of super austenitic stainless steel S32654[J]. Journal of Materials Science & Technology, 2022,102:105-114.
    [10] LIU H H, FU P X, LIU H W, et al. Effects of rare earth elements on microstructure evolution and mechanical properties of 718H pre-hardened mold steel[J]. Journal of Materials Science & Technology, 2020, 50:245-256.
    [11] CHEN L, MA X C, WANG L M, et al. Effect of rare earth element yttrium addition on microstructures and properties of a 21Cr–11Ni austenitic heat-resistant stainless steel[J]. Materials and Design, 2011, 32(4): 2206-2212. doi: 10.1016/j.matdes.2010.11.022
    [12] ZHANG S C, LI H B, JIANG Z H, et al. Unveiling the mechanism of yttrium significantly improving high-temperature oxidation resistance of super-austenitic stainless[J]. Journal of Materials Science & Technology. 2022.115. 103-114.
    [13] YANG S, MA J Y, CHEN C. et al. Effects of B and Ce grain boundary segregation on precipitates in super austenitic stainless steel[J]. Metals, 2023,13:326. doi: 10.3390/met13020326
    [14] ZHANG R Z, HE J S, XU S G, et al. The roles of Ce and Mn on solidification behaviors and mechanical properties of 7Mo super austenitic stainless steel[J]. Journal of Materials Research and Technology, 2023, 22: 1238-1249. doi: 10.1016/j.jmrt.2022.11.148
    [15] GUO Z S, LI Y P, MA J Y, et al. Effect of Ce content on precipitation behavior in S31254 Super Austenitic Stainless Steel[J]. Journal of Alloys and Compounds, 2023,966:171254. doi: 10.1016/j.jallcom.2023.171254
    [16] WANG H L, DU S M, CAO M J, et al. Influence of rare earth on microstructure and carbide of 21-4N steel[J]. Iron Steel Vanadium Titanium, 2020,41(1):119-124. (王洪利, 杜思敏, 曹美姣, 等. 微量稀土元素对奥氏体不锈钢21-4N显微组织及碳化物的影响[J]. 钢铁钒钛, 2020,41(1):119-124. doi: 10.7513/j.issn.1004-7638.2020.01.021

    WANG H L, DU S M, CAO M J, et al. Influence of rare earth on microstructure and carbide of 21-4N steel[J]. Iron Steel Vanadium Titanium, 2020, 41(1): 119-124. doi: 10.7513/j.issn.1004-7638.2020.01.021
    [17] MENG X H, WANG W, BI S, et al. Research on IAF nucleation behavior induced by Ce/Ce-Zr inclusion in high strength steel plate for shipbuilding[J]. Iron Steel Vanadium Titanium, 2022,43(2):146-151. (孟祥海, 王伟, 毕胜, 等. Ce/Ce-Zr夹杂物诱导高强船板钢中针状铁素体形核行为的研究[J]. 钢铁钒钛, 2022,43(2):146-151. doi: 10.7513/j.issn.1004-7638.2022.02.022

    MENG X H, WANG W, BI S, et al. Research on IAF nucleation behavior induced by Ce/Ce-Zr inclusion in high strength steel plate for shipbuilding[J]. Iron Steel Vanadium Titanium, 2022, 43(2): 146-151. doi: 10.7513/j.issn.1004-7638.2022.02.022
    [18] ZHANG Y. Solidification microstructure evolution and segregation law of super austenitic stainless steel[D]. Beijing: University of Science and Technology Beijing, 2023. (张月. 超级奥氏体不锈钢凝固组织演变及偏析规律[D]. 北京: 北京科技大学, 2023.

    ZHANG Y. Solidification microstructure evolution and segregation law of super austenitic stainless steel[D]. Beijing: University of Science and Technology Beijing, 2023.
    [19] MARIN R, COMBEAU H, ZOLLINGER J, et al. σ-phase formation in super austenitic stainless steel during directional solidification and subsequent phase transformations[J]. Metall Mater Trans A 51, 3526-3534 (2020).
    [20] LAN J, HE J J, DING W J, et al. Study on heterogeneous nuclei in cast H13 steel modified by rare earths[J]. Journal of the Chinese Society of Rare Earths, 2001,19(2):142-145. (兰杰, 贺俊杰, 丁文江, 等. 变质CH13钢中Ce2O3异质核心作用的研究[J]. 中国稀土学报, 2001,19(2):142-145. doi: 10.3321/j.issn:1000-4343.2001.02.011

    LAN J, HE J J, DING W J, et al. Study on heterogeneous nuclei in cast H13 steel modified by rare earths[J]. Journal of the Chinese Society of Rare Earths, 2001, 19(2): 142-145. doi: 10.3321/j.issn:1000-4343.2001.02.011
    [21] WANG Q, WANG L J, ZHANG W, et al. Effect of cerium on the austenitic nucleation and growth of high-Mo austenitic stainless steel[J]. Metallurgical and Materials Transactions B, 2020.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  25
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-17
  • 刊出日期:  2025-02-27

目录

    /

    返回文章
    返回