Research progress of preparation of refractory high entropy alloy powder
-
摘要: 以增材制造为代表的近净成形工艺为难熔高熵合金复杂零部件制备提供了技术路径,同时也对其粉末提出了较高的性能要求。综述了难熔高熵合金成分设计准则以及各类元素对合金性能的影响,分析比较了其粉末制备的主要技术路线(机械合金化、等离子旋转电极雾化和射频等离子体球化)。指出了现有难熔高熵合金粉末在粉末冶金、激光熔覆、增材制造等领域的应用中存在的问题和解决办法。Abstract: The near-net forming process such as additive manufacturing provides technical paths for the preparation of complex parts of refractory high-entropy alloys, and also puts forward higher performance requirements for their powders. In this paper, the composition design criteria of refractory high-entropy alloys and the effects of various elements on the properties of alloys are reviewed. The main technical routes of powder preparation (mechanical alloying, plasma rotating electrode process and radio frequency plasma spheroidization) are analyzed and compared. In addition, the problems and solutions in the application of refractory high-entropy alloy powder in powder metallurgy, laser cladding, additive manufacturing and other fields had also been discussed.
-
图 5 (a) 金属原料粉末[29];(b)喷雾造粒粉末[29];(c)等离子体球化后难熔高熵合金粉末SEM形貌及其粒径分布[29]
Figure 5. (a) SEM images of four different metal raw material powders[29]; (b) SEM images after spray granulation, insertion grout photos[29]; (c) SEM images and particle size distributions of HEA powders after plasma spheroidization[29]
表 1 Ti(65-x)Ta25Nb10Zrx(x=0、5、10、15、20)难熔高熵合金的ΔSmix、ΔHmix、Ω、δ数值[15]
Table 1. Values of ΔSmix, ΔHmix, Ω and δ of Ti(65-x) Ta25Nb10Zrx (x=0, 5, 10, 15, 20) refractory high entropy alloy[15]
合金名称 ΔSmix /(J·mol−1·K−1) ΔHmix /(kJ·mol−1) Ω δ/% VEC Ti65Ta25Nb10 7.12 1.17 14.3 0 4.35 Ti60Ta25Nb10Zr5 8.59 1.31 15.5 1.9 4.35 Ti55Ta25Nb10Zr10 9.44 1.45 15.4 2.6 4.35 Ti50Ta25Nb10Zr15 10.04 1.59 15 3.12 4.35 Ti45Ta25Nb10Zr20 10.46 1.73 14.4 3.48 4.35 表 2 难熔高熵合金粉末三种制粉方法比较
Table 2. Comparison of three milling methods of refractory high entropy alloy powder
制粉方法 优点 缺点 MA 工艺简单,成本较低,
粉末晶粒细小引入杂质,粉末呈片状,
流动性较差PREP 粉末球形度高,几乎无
空心粉,氧含量低原材料需要熔锭棒材,
细粉收得率低RFPS 粉末球形度高,流动性好,
内部缺陷少,粒度可控原料不规则粉末制备可能
引入碳、氧等杂质元素表 3 样品成分[40]
Table 3. Compositions of samples
元素 S1/% S2/% S3/% 平均值/% 方差 W 27.6 24.76 24.45 25.46 1.65 Ta 28.09 29.49 27.06 28.21 0.99 Nb 21.61 20.97 21.93 21.50 0.16 Mo 23.05 24.79 26.67 24.84 2.19 -
[1] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004(5):5. [2] JI C W, MA A B, JIANG J H. Research status and development trend of light weight high entropy alloys[J]. Materials Review, 2020,34(19):19094-19100. (季承维, 马爱斌, 江静华. 轻质高熵合金的研究现状与发展趋势[J]. 材料导报, 2020,34(19):19094-19100. doi: 10.11896/cldb.19070273JI C W, MA A B, JIANG J H. Research status and development trend of light weight high entropy alloys[J]. Materials Review, 2020, 34(19): 19094-19100. doi: 10.11896/cldb.19070273 [3] YEH J W. Recent progress in high-entropy alloys[J]. Annales de Chimie Science des Matériaux, 2006,31(6):633-648. [4] MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, Oxford: Pergamon-Elsevier Science Ltd, 2017,122:448-511. [5] CHEN J, ZHOU X, WANG W, et al. A review on fundamental of high entropy alloys with promising high–temperature properties[J]. Journal of Alloys and Compounds, 2018,760:15-30. doi: 10.1016/j.jallcom.2018.05.067 [6] SENKOV O N, MIRACLE D B, CHAPUT K J, et al. Development and exploration of refractory high entropy alloys-A review[J]. Journal of Materials Research, Heidelberg: Springer Heidelberg, 2018,33(19):3092-3128. [7] ZHANG Y, LU Z P, MA S G, et al. Guidelines in predicting phase formation of high-entropy alloys[J]. MRS Communications, 2014,4(2):57-62. doi: 10.1557/mrc.2014.11 [8] ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014,61:1-93. doi: 10.1016/j.pmatsci.2013.10.001 [9] YANG X, CHEN S Y, COTTON J D, et al. Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium[J]. Jom, New York: Springer, 2014,66(10):2009-2020. [10] KANG B, LEE J, RYU H J, et al. Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, Lausanne: Elsevier Science Sa, 2018, 712: 616–624. [11] ZHANG Y, ZHOU Y J, LIN J P, et al. Solid-solution phase formation rules for multi-component alloys[J]. Advanced Engineering Materials, 2008,10(6):534-538. doi: 10.1002/adem.200700240 [12] YE Y F, WANG Q, LU J, et al. High-entropy alloy: challenges and prospects[J]. Materials Today, 2016,19(6):349-362. doi: 10.1016/j.mattod.2015.11.026 [13] GUO S, NG C, LU J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys[J]. Journal of Applied Physics, 2011,109(10):103505. doi: 10.1063/1.3587228 [14] TONG C J, CHEN Y L, YEH J W, et al. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J]. Metallurgical and Materials Transactions A, 2005,36(4):881-893. doi: 10.1007/s11661-005-0283-0 [15] JI G Y. Composition design, structural stability and mechanical properties of Ti(65-x)Ta(25)Nb(10)Zrx multi-component refractory alloys[D]. Yantai: Yantai University, 2022(in Chinese). (姬广运. Ti(65-x)Ta(25)Nb(10)Zrx多组元难熔合金的成分设计、结构稳定性和力学性能研究[D]. 烟台: 烟台大学, 2022.JI G Y. Composition design, structural stability and mechanical properties of Ti(65-x)Ta(25)Nb(10)Zrx multi-component refractory alloys[D]. Yantai: Yantai University, 2022(in Chinese). [16] WU M, WANG S, HUANG H, et al. CALPHAD aided eutectic high-entropy alloy design[J]. Materials Letters, 2020,262:127175. doi: 10.1016/j.matlet.2019.127175 [17] RATURI A, ADITYA C J, GURAO N P, et al. ICME approach to explore equiatomic and non-equiatomic single phase BCC refractory high entropy alloys[J]. Journal of Alloys and Compounds, 2019,806:587-595. doi: 10.1016/j.jallcom.2019.06.387 [18] HAMED N, KIANI R A, JALIL V. Design of a low density refractory high entropy alloy in non-equiatomic W–Mo–Cr–Ti–Al system[J]. Vacuum, 2020,181:109614. doi: 10.1016/j.vacuum.2020.109614 [19] CAO Y, LIU Y, LIU B, et al. Effects of Al and Mo on high temperature oxidation behavior of refractory high entropy alloys[J]. Transactions of Nonferrous Metals Society of China, 2019,29(7):1476-1483. doi: 10.1016/S1003-6326(19)65054-5 [20] SENKOV O N, WILKS G B, MIRACLE D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010,18(9):1758-1765. doi: 10.1016/j.intermet.2010.05.014 [21] WANG Z, WU H, WU Y, et al. Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering[J]. Materials Today, 2022,54:83-89. doi: 10.1016/j.mattod.2022.02.006 [22] PAN J Y. Study on preparation and properties of NbMoTaWX Series high entropy alloy[D]. Nanjing: Southeast University, 2019. (潘家怡. NbMoTaWX系高熵合金的制备与性能研究[D]. 南京: 东南大学, 2019.PAN J Y. Study on preparation and properties of NbMoTaWX Series high entropy alloy[D]. Nanjing: Southeast University, 2019. [23] QI P B, LIANG X B, TONG Y G, et al. Effect of milling time on mechanical alloying of NbMoTaW high entropy alloy powder[J]. Rare Metal Materials and Engineering, 2019,48(8):2623-2629. (漆陪部, 梁秀兵, 仝永刚, 等. 球磨时间对机械合金化制备NbMoTaW高熵合金粉末的影响[J]. 稀有金属材料与工程, 2019,48(8):2623-2629.QI P B, LIANG X B, TONG Y G, et al. Effect of milling time on mechanical alloying of NbMoTaW high entropy alloy powder[J]. Rare Metal Materials and Engineering, 2019, 48(8): 2623-2629. [24] LIU C, CHEN J N, DING W W, et al. Preparation and properties of near-spherical WMoTaTi refractory high entropy alloy powder[J]. Powder Metallurgy Technology, 2021,39(5):403-409. (刘畅, 陈佳男, 丁旺旺, 等. 近球形WMoTaTi难熔高熵合金粉末的制备及性能[J]. 粉末冶金技术, 2021,39(5):403-409.LIU C, CHEN J N, DING W W, et al. Preparation and properties of near-spherical WMoTaTi refractory high entropy alloy powder[J]. Powder Metallurgy Technology, 2021, 39(5): 403-409. [25] Ministry of Industry and Information Technology of the People's Republic of China. YS/T 1297—2019 Measuring method for sphericity ratio of titanium and titanium alloy powders. Beijing: Metallurgical Industry Press, 2019. (中华人民共和国工业和信息化部. YS/T 1297—2019钛及钛合金粉末球形率的测定方法. 北京: 冶金工业出版社, 2019.Ministry of Industry and Information Technology of the People's Republic of China. YS/T 1297—2019 Measuring method for sphericity ratio of titanium and titanium alloy powders. Beijing: Metallurgical Industry Press, 2019. [26] TANG J, NIE Y, LEI Q, et al. Characteristics and atomization behavior of Ti-6Al-4V powder produced by plasma rotating electrode process[J]. Advanced Powder Technology, Amsterdam: Elsevier, 2019,30(10):2330-2337. doi: 10.1016/j.apt.2019.07.015 [27] GAO S, FU A, XIE Z, et al. Preparation and microstructure of high-activity spherical TaNbTiZr refractory high-entropy alloy powders[J]. Materials, 2023,16(2):791. doi: 10.3390/ma16020791 [28] LI J. Preparation of low-oxygen spherical Ti-6Al-4V powder by radio-frequency plasma-calcium reduction and its properties[D]. Zhengzhou: Zhengzhou University, 2021. (李静. 射频等离子体-钙还原制备低氧球形Ti-6Al-4V粉末及其性能研究[D]. 郑州: 郑州大学, 2021.LI J. Preparation of low-oxygen spherical Ti-6Al-4V powder by radio-frequency plasma-calcium reduction and its properties[D]. Zhengzhou: Zhengzhou University, 2021. [29] LIU B, DUAN H, LI L, et al. Microstructure and mechanical properties of ultra-hard spherical refractory high-entropy alloy powders fabricated by plasma spheroidization[J]. Powder Technology, 2021,382:550-555. doi: 10.1016/j.powtec.2021.01.021 [30] Na T W, Park K B, Lee S Y, et al. Preparation of spherical TaNbHfZrTi high-entropy alloy powders by a hydrogenation–dehydrogenation reaction and thermal plasma treatment[J]. Journal of Alloys and Compounds, 2020, 817: 152757. [31] XIA M, CHEN Y, CHEN K, et al. Synthesis of WTaMoNbZr refractory high-entropy alloy powder by plasma spheroidization process for additive manufacturing[J]. Journal of Alloys and Compounds, 2022, 917: 165501. [32] HAN J S. Study on preparation, microstructure and surface oxidation protection of MoNbTaW refractory high entropy alloy by discharge plasma sintering[D]. Lanzhou: Lanzhou University of Technology, 2022. (韩杰胜. MoNbTaW系难熔高熵合金的放电等离子烧结制备、微观组织及其表面抗氧化防护研究[D]. 兰州: 兰州理工大学, 2022.HAN J S. Study on preparation, microstructure and surface oxidation protection of MoNbTaW refractory high entropy alloy by discharge plasma sintering[D]. Lanzhou: Lanzhou University of Technology, 2022. [33] HAN Z D, LUAN H W, LIU X, et al. Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys[J]. Materials Science and Engineering: A, 2018, 712: 380–385. [34] QIAO Y T. Study on process and properties of refractory high entropy alloy prepared by powder metallurgy[D]. Changsha: National University of Defense Technology, 2020. (乔娅婷. 粉末冶金法制备难熔高熵合金的工艺及性能研究[D]. 长沙: 国防科技大学, 2020.QIAO Y T. Study on process and properties of refractory high entropy alloy prepared by powder metallurgy[D]. Changsha: National University of Defense Technology, 2020. [35] ZHAO B, CHEN G, LIN Q, et al. Thermal deformation characteristics of AlMo0.8NbTiW0.2Zr refractory multi-principal element alloy[J]. Intermetallics, Oxford: Elsevier Sci Ltd, 2022, 144: 107524. [36] BEAUSOLEIL I G L, PARRY M E, MONDAL K, et al. Spark plasma sintered, MoNbTi-based multi-principal element alloys with Cr, V, and Zr[J]. Journal of Alloys and Compounds, Lausanne: Elsevier Science Sa, 2022,927:167083. [37] LI Q Y, LI D C, ZHANG H, et al. Study on microstructure and strength of NbMoTaTi refractory high entropy alloy formed by laser cladding deposition[J]. Aeronautical Manufacturing Technology, 2018, 61(10): 61-67. (李青宇, 李涤尘, 张航, 等. 激光熔覆沉积成形NbMoTaTi难熔高熵合金的组织与强度研究[J]. 航空制造技术, 2018, 61(10): 61–67.LI Q Y, LI D C, ZHANG H, et al. Study on microstructure and strength of NbMoTaTi refractory high entropy alloy formed by laser cladding deposition[J]. Aeronautical Manufacturing Technology, 2018, 61(10): 61-67. [38] ZHAO Y, WU M, JIANG P, et al. Microstructure of WTaNbMo refractory high entropy alloy coating fabricated by dynamic magnetic field assisted laser cladding process[J]. Journal of Materials Research and Technology, 2022,20:1908-1911. doi: 10.1016/j.jmrt.2022.07.185 [39] DOBBELSTEIN H, THIELE M, GUREVICH E L, et al. Direct metal deposition of refractory high entropy alloy MoNbTaW[J]. Physics Procedia, 2016,83:624-633. doi: 10.1016/j.phpro.2016.08.065 [40] ZHANG H, ZHAO Y, HUANG S, et al. Manufacturing and analysis of high-performance refractory high-entropy alloy via selective laser melting (SLM)[J]. Materials, Basel: Mdpi, 2019,12(5):720. [41] DOBBELSTEIN H, GUREVICH E L, GEORGE E P, et al. Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends[J]. Additive Manufacturing, 2019,25:252-262. doi: 10.1016/j.addma.2018.10.042 [42] GU P F, QI T B, CHEN L, et al. Manufacturing and analysis of VNbMoTaW refractory high-entropy alloy fabricated by selective laser melting[J]. International Journal of Refractory Metals and Hard Materials, 2022,105:105834. doi: 10.1016/j.ijrmhm.2022.105834 -