中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

难熔高熵合金粉末制备技术及应用研究综述

赵宇敏 施麒 刘斌斌 谭冲 刘辛 周舸 丁忠耀 秦奉

赵宇敏, 施麒, 刘斌斌, 谭冲, 刘辛, 周舸, 丁忠耀, 秦奉. 难熔高熵合金粉末制备技术及应用研究综述[J]. 钢铁钒钛, 2025, 46(1): 141-151. doi: 10.7513/j.issn.1004-7638.2025.01.020
引用本文: 赵宇敏, 施麒, 刘斌斌, 谭冲, 刘辛, 周舸, 丁忠耀, 秦奉. 难熔高熵合金粉末制备技术及应用研究综述[J]. 钢铁钒钛, 2025, 46(1): 141-151. doi: 10.7513/j.issn.1004-7638.2025.01.020
ZHAO Yumin, SHI Qi, LIU Binbin, TAN Chong, LIU Xin, ZHOU Ge, DING Zhongyao, QIN Feng. Research progress of preparation of refractory high entropy alloy powder[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 141-151. doi: 10.7513/j.issn.1004-7638.2025.01.020
Citation: ZHAO Yumin, SHI Qi, LIU Binbin, TAN Chong, LIU Xin, ZHOU Ge, DING Zhongyao, QIN Feng. Research progress of preparation of refractory high entropy alloy powder[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 141-151. doi: 10.7513/j.issn.1004-7638.2025.01.020

难熔高熵合金粉末制备技术及应用研究综述

doi: 10.7513/j.issn.1004-7638.2025.01.020
基金项目: 广东省重点领域研发计划资助(2018B090904004);新金属材料国家重点实验室开放基金资助项目(2022-Z16); 广东省国际科技合作(2022A0505050025);广州市重点研发计划(202206040001);清远市科技计划项目(2021DZX028); 广东省科学院打造综合产业技术创新中心行动资金项目(2022GDASZH-2022010107)。
详细信息
    作者简介:

    赵宇敏,1998年出生,男,山西长治人,硕士研究生,从事金属粉体制备及增材制造研究,E-mail: 1252955839@qq.com

    通讯作者:

    施麒,1987年出生,男,浙江绍兴人,高级工程师,博士研究生,主要从事金属粉体制备及增材制造研究,E-mail: shiqi@gdinm.com

  • 中图分类号: TF12

Research progress of preparation of refractory high entropy alloy powder

  • 摘要: 以增材制造为代表的近净成形工艺为难熔高熵合金复杂零部件制备提供了技术路径,同时也对其粉末提出了较高的性能要求。综述了难熔高熵合金成分设计准则以及各类元素对合金性能的影响,分析比较了其粉末制备的主要技术路线(机械合金化、等离子旋转电极雾化和射频等离子体球化)。指出了现有难熔高熵合金粉末在粉末冶金、激光熔覆、增材制造等领域的应用中存在的问题和解决办法。
  • 图  1  各参数与物相之间的关系[11]

    (a)δ, ΔHmix和物相之间的关系;(b)δ, ΔHmix, ΔSmix和物相之间的关系

    Figure  1.  The relationship between the parameters and the phase[11]

    图  2  气固流化技术[24]

    (a)气固流化原理;(b)粉体改性原理

    Figure  2.  Schematic diagram of gas-solid fluidization technology[24]

    图  3  等离子旋转电极雾化制粉工艺原理[24]

    Figure  3.  Schematic diagram of atomizing pulverization process with plasma rotating electrod[24]

    图  4  (a)TaNbTiZr棒材[27];(b)PREP制备的粉末SEM形貌及插入的粒径分布[27];(c)TaNbTiZr棒材和PREP制备粉末XRD谱[27]

    Figure  4.  (a) TaNbTiZr bar[27]; (b) SEM image of powder prepared by PREP and particle size distribution of insertion[27]; (c) XRD pattern of TaNbTiZr rod and PREP powder preparation[27]

    图  5  (a) 金属原料粉末[29];(b)喷雾造粒粉末[29];(c)等离子体球化后难熔高熵合金粉末SEM形貌及其粒径分布[29]

    Figure  5.  (a) SEM images of four different metal raw material powders[29]; (b) SEM images after spray granulation, insertion grout photos[29]; (c) SEM images and particle size distributions of HEA powders after plasma spheroidization[29]

    图  7  氢化破碎和等离子体处理后的粉末形貌[30]

    (a)氢化破碎后的不规则粉体;(b)等离子体处理后的球形粉末

    Figure  7.  Morphology of powder after hydrogenation crushing and plasma treatment[30]

    图  6  难熔高熵合金粉末纳米压痕加载-卸载曲线[29]

    Figure  6.  Loading and unloading nanoindentation curve of HEA powder inserted into indentation photograph[29]

    图  8  射频等离子球化前后粉末的SEM形貌[31]

    (a)研磨粉末;(b) (a)的放大图像;(c)等离子处理后的球形粉末;(d) (c)的放大图像

    Figure  8.  Morphology observed by SEM[31]

    图  9  (a) NbMoTaTi难熔高熵合金的缺陷[37] ;(b) NbMoTi合金激光熔覆沉积成形的纵表面[37]

    Figure  9.  (a) Defect diagram of NbMoTaTi refractory high entropy alloy[37];(b)Longitudinal surface of NbMoTi alloy formed by laser cladding deposition[37]

    图  10  直接沉积和重熔沉积单道熔道表面SEM形貌和能谱 (EDX) 元素分布 [41]

    (a)单道沉积熔道SEM;(b)重熔沉积单道熔道表面SEM; (c)单道沉积熔道元素分布; (d)重熔沉积单道熔道元素分布

    Figure  10.  SEM image and EDX element distribution of direct deposition and remelting deposition single-pass fuse surface[41]

    表  1  Ti(65-xTa25Nb10Zrxx=0、5、10、15、20)难熔高熵合金的ΔSmix、ΔHmixΩδ数值[15]

    Table  1.   Values of ΔSmix, ΔHmix, Ω and δ of Ti(65-x) Ta25Nb10Zrx (x=0, 5, 10, 15, 20) refractory high entropy alloy[15]

    合金名称ΔSmix /(J·mol−1·K−1)ΔHmix /(kJ·mol−1)Ωδ/%VEC
    Ti65Ta25Nb107.121.1714.304.35
    Ti60Ta25Nb10Zr58.591.3115.51.94.35
    Ti55Ta25Nb10Zr109.441.4515.42.64.35
    Ti50Ta25Nb10Zr1510.041.59153.124.35
    Ti45Ta25Nb10Zr2010.461.7314.43.484.35
    下载: 导出CSV

    表  2  难熔高熵合金粉末三种制粉方法比较

    Table  2.   Comparison of three milling methods of refractory high entropy alloy powder

    制粉方法 优点 缺点
    MA 工艺简单,成本较低,
    粉末晶粒细小
    引入杂质,粉末呈片状,
    流动性较差
    PREP 粉末球形度高,几乎无
    空心粉,氧含量低
    原材料需要熔锭棒材,
    细粉收得率低
    RFPS 粉末球形度高,流动性好,
    内部缺陷少,粒度可控
    原料不规则粉末制备可能
    引入碳、氧等杂质元素
    下载: 导出CSV

    表  3  样品成分[40]

    Table  3.   Compositions of samples

    元素S1/%S2/%S3/%平均值/%方差
    W27.624.7624.4525.461.65
    Ta28.0929.4927.0628.210.99
    Nb21.6120.9721.9321.500.16
    Mo23.0524.7926.6724.842.19
    下载: 导出CSV
  • [1] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004(5):5.
    [2] JI C W, MA A B, JIANG J H. Research status and development trend of light weight high entropy alloys[J]. Materials Review, 2020,34(19):19094-19100. (季承维, 马爱斌, 江静华. 轻质高熵合金的研究现状与发展趋势[J]. 材料导报, 2020,34(19):19094-19100. doi: 10.11896/cldb.19070273

    JI C W, MA A B, JIANG J H. Research status and development trend of light weight high entropy alloys[J]. Materials Review, 2020, 34(19): 19094-19100. doi: 10.11896/cldb.19070273
    [3] YEH J W. Recent progress in high-entropy alloys[J]. Annales de Chimie Science des Matériaux, 2006,31(6):633-648.
    [4] MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, Oxford: Pergamon-Elsevier Science Ltd, 2017,122:448-511.
    [5] CHEN J, ZHOU X, WANG W, et al. A review on fundamental of high entropy alloys with promising high–temperature properties[J]. Journal of Alloys and Compounds, 2018,760:15-30. doi: 10.1016/j.jallcom.2018.05.067
    [6] SENKOV O N, MIRACLE D B, CHAPUT K J, et al. Development and exploration of refractory high entropy alloys-A review[J]. Journal of Materials Research, Heidelberg: Springer Heidelberg, 2018,33(19):3092-3128.
    [7] ZHANG Y, LU Z P, MA S G, et al. Guidelines in predicting phase formation of high-entropy alloys[J]. MRS Communications, 2014,4(2):57-62. doi: 10.1557/mrc.2014.11
    [8] ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014,61:1-93. doi: 10.1016/j.pmatsci.2013.10.001
    [9] YANG X, CHEN S Y, COTTON J D, et al. Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium[J]. Jom, New York: Springer, 2014,66(10):2009-2020.
    [10] KANG B, LEE J, RYU H J, et al. Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, Lausanne: Elsevier Science Sa, 2018, 712: 616–624.
    [11] ZHANG Y, ZHOU Y J, LIN J P, et al. Solid-solution phase formation rules for multi-component alloys[J]. Advanced Engineering Materials, 2008,10(6):534-538. doi: 10.1002/adem.200700240
    [12] YE Y F, WANG Q, LU J, et al. High-entropy alloy: challenges and prospects[J]. Materials Today, 2016,19(6):349-362. doi: 10.1016/j.mattod.2015.11.026
    [13] GUO S, NG C, LU J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys[J]. Journal of Applied Physics, 2011,109(10):103505. doi: 10.1063/1.3587228
    [14] TONG C J, CHEN Y L, YEH J W, et al. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J]. Metallurgical and Materials Transactions A, 2005,36(4):881-893. doi: 10.1007/s11661-005-0283-0
    [15] JI G Y. Composition design, structural stability and mechanical properties of Ti(65-x)Ta(25)Nb(10)Zrx multi-component refractory alloys[D]. Yantai: Yantai University, 2022(in Chinese). (姬广运. Ti(65-x)Ta(25)Nb(10)Zrx多组元难熔合金的成分设计、结构稳定性和力学性能研究[D]. 烟台: 烟台大学, 2022.

    JI G Y. Composition design, structural stability and mechanical properties of Ti(65-x)Ta(25)Nb(10)Zrx multi-component refractory alloys[D]. Yantai: Yantai University, 2022(in Chinese).
    [16] WU M, WANG S, HUANG H, et al. CALPHAD aided eutectic high-entropy alloy design[J]. Materials Letters, 2020,262:127175. doi: 10.1016/j.matlet.2019.127175
    [17] RATURI A, ADITYA C J, GURAO N P, et al. ICME approach to explore equiatomic and non-equiatomic single phase BCC refractory high entropy alloys[J]. Journal of Alloys and Compounds, 2019,806:587-595. doi: 10.1016/j.jallcom.2019.06.387
    [18] HAMED N, KIANI R A, JALIL V. Design of a low density refractory high entropy alloy in non-equiatomic W–Mo–Cr–Ti–Al system[J]. Vacuum, 2020,181:109614. doi: 10.1016/j.vacuum.2020.109614
    [19] CAO Y, LIU Y, LIU B, et al. Effects of Al and Mo on high temperature oxidation behavior of refractory high entropy alloys[J]. Transactions of Nonferrous Metals Society of China, 2019,29(7):1476-1483. doi: 10.1016/S1003-6326(19)65054-5
    [20] SENKOV O N, WILKS G B, MIRACLE D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010,18(9):1758-1765. doi: 10.1016/j.intermet.2010.05.014
    [21] WANG Z, WU H, WU Y, et al. Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering[J]. Materials Today, 2022,54:83-89. doi: 10.1016/j.mattod.2022.02.006
    [22] PAN J Y. Study on preparation and properties of NbMoTaWX Series high entropy alloy[D]. Nanjing: Southeast University, 2019. (潘家怡. NbMoTaWX系高熵合金的制备与性能研究[D]. 南京: 东南大学, 2019.

    PAN J Y. Study on preparation and properties of NbMoTaWX Series high entropy alloy[D]. Nanjing: Southeast University, 2019.
    [23] QI P B, LIANG X B, TONG Y G, et al. Effect of milling time on mechanical alloying of NbMoTaW high entropy alloy powder[J]. Rare Metal Materials and Engineering, 2019,48(8):2623-2629. (漆陪部, 梁秀兵, 仝永刚, 等. 球磨时间对机械合金化制备NbMoTaW高熵合金粉末的影响[J]. 稀有金属材料与工程, 2019,48(8):2623-2629.

    QI P B, LIANG X B, TONG Y G, et al. Effect of milling time on mechanical alloying of NbMoTaW high entropy alloy powder[J]. Rare Metal Materials and Engineering, 2019, 48(8): 2623-2629.
    [24] LIU C, CHEN J N, DING W W, et al. Preparation and properties of near-spherical WMoTaTi refractory high entropy alloy powder[J]. Powder Metallurgy Technology, 2021,39(5):403-409. (刘畅, 陈佳男, 丁旺旺, 等. 近球形WMoTaTi难熔高熵合金粉末的制备及性能[J]. 粉末冶金技术, 2021,39(5):403-409.

    LIU C, CHEN J N, DING W W, et al. Preparation and properties of near-spherical WMoTaTi refractory high entropy alloy powder[J]. Powder Metallurgy Technology, 2021, 39(5): 403-409.
    [25] Ministry of Industry and Information Technology of the People's Republic of China. YS/T 1297—2019 Measuring method for sphericity ratio of titanium and titanium alloy powders. Beijing: Metallurgical Industry Press, 2019. (中华人民共和国工业和信息化部. YS/T 1297—2019钛及钛合金粉末球形率的测定方法. 北京: 冶金工业出版社, 2019.

    Ministry of Industry and Information Technology of the People's Republic of China. YS/T 1297—2019 Measuring method for sphericity ratio of titanium and titanium alloy powders. Beijing: Metallurgical Industry Press, 2019.
    [26] TANG J, NIE Y, LEI Q, et al. Characteristics and atomization behavior of Ti-6Al-4V powder produced by plasma rotating electrode process[J]. Advanced Powder Technology, Amsterdam: Elsevier, 2019,30(10):2330-2337. doi: 10.1016/j.apt.2019.07.015
    [27] GAO S, FU A, XIE Z, et al. Preparation and microstructure of high-activity spherical TaNbTiZr refractory high-entropy alloy powders[J]. Materials, 2023,16(2):791. doi: 10.3390/ma16020791
    [28] LI J. Preparation of low-oxygen spherical Ti-6Al-4V powder by radio-frequency plasma-calcium reduction and its properties[D]. Zhengzhou: Zhengzhou University, 2021. (李静. 射频等离子体-钙还原制备低氧球形Ti-6Al-4V粉末及其性能研究[D]. 郑州: 郑州大学, 2021.

    LI J. Preparation of low-oxygen spherical Ti-6Al-4V powder by radio-frequency plasma-calcium reduction and its properties[D]. Zhengzhou: Zhengzhou University, 2021.
    [29] LIU B, DUAN H, LI L, et al. Microstructure and mechanical properties of ultra-hard spherical refractory high-entropy alloy powders fabricated by plasma spheroidization[J]. Powder Technology, 2021,382:550-555. doi: 10.1016/j.powtec.2021.01.021
    [30] Na T W, Park K B, Lee S Y, et al. Preparation of spherical TaNbHfZrTi high-entropy alloy powders by a hydrogenation–dehydrogenation reaction and thermal plasma treatment[J]. Journal of Alloys and Compounds, 2020, 817: 152757.
    [31] XIA M, CHEN Y, CHEN K, et al. Synthesis of WTaMoNbZr refractory high-entropy alloy powder by plasma spheroidization process for additive manufacturing[J]. Journal of Alloys and Compounds, 2022, 917: 165501.
    [32] HAN J S. Study on preparation, microstructure and surface oxidation protection of MoNbTaW refractory high entropy alloy by discharge plasma sintering[D]. Lanzhou: Lanzhou University of Technology, 2022. (韩杰胜. MoNbTaW系难熔高熵合金的放电等离子烧结制备、微观组织及其表面抗氧化防护研究[D]. 兰州: 兰州理工大学, 2022.

    HAN J S. Study on preparation, microstructure and surface oxidation protection of MoNbTaW refractory high entropy alloy by discharge plasma sintering[D]. Lanzhou: Lanzhou University of Technology, 2022.
    [33] HAN Z D, LUAN H W, LIU X, et al. Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys[J]. Materials Science and Engineering: A, 2018, 712: 380–385.
    [34] QIAO Y T. Study on process and properties of refractory high entropy alloy prepared by powder metallurgy[D]. Changsha: National University of Defense Technology, 2020. (乔娅婷. 粉末冶金法制备难熔高熵合金的工艺及性能研究[D]. 长沙: 国防科技大学, 2020.

    QIAO Y T. Study on process and properties of refractory high entropy alloy prepared by powder metallurgy[D]. Changsha: National University of Defense Technology, 2020.
    [35] ZHAO B, CHEN G, LIN Q, et al. Thermal deformation characteristics of AlMo0.8NbTiW0.2Zr refractory multi-principal element alloy[J]. Intermetallics, Oxford: Elsevier Sci Ltd, 2022, 144: 107524.
    [36] BEAUSOLEIL I G L, PARRY M E, MONDAL K, et al. Spark plasma sintered, MoNbTi-based multi-principal element alloys with Cr, V, and Zr[J]. Journal of Alloys and Compounds, Lausanne: Elsevier Science Sa, 2022,927:167083.
    [37] LI Q Y, LI D C, ZHANG H, et al. Study on microstructure and strength of NbMoTaTi refractory high entropy alloy formed by laser cladding deposition[J]. Aeronautical Manufacturing Technology, 2018, 61(10): 61-67. (李青宇, 李涤尘, 张航, 等. 激光熔覆沉积成形NbMoTaTi难熔高熵合金的组织与强度研究[J]. 航空制造技术, 2018, 61(10): 61–67.

    LI Q Y, LI D C, ZHANG H, et al. Study on microstructure and strength of NbMoTaTi refractory high entropy alloy formed by laser cladding deposition[J]. Aeronautical Manufacturing Technology, 2018, 61(10): 61-67.
    [38] ZHAO Y, WU M, JIANG P, et al. Microstructure of WTaNbMo refractory high entropy alloy coating fabricated by dynamic magnetic field assisted laser cladding process[J]. Journal of Materials Research and Technology, 2022,20:1908-1911. doi: 10.1016/j.jmrt.2022.07.185
    [39] DOBBELSTEIN H, THIELE M, GUREVICH E L, et al. Direct metal deposition of refractory high entropy alloy MoNbTaW[J]. Physics Procedia, 2016,83:624-633. doi: 10.1016/j.phpro.2016.08.065
    [40] ZHANG H, ZHAO Y, HUANG S, et al. Manufacturing and analysis of high-performance refractory high-entropy alloy via selective laser melting (SLM)[J]. Materials, Basel: Mdpi, 2019,12(5):720.
    [41] DOBBELSTEIN H, GUREVICH E L, GEORGE E P, et al. Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends[J]. Additive Manufacturing, 2019,25:252-262. doi: 10.1016/j.addma.2018.10.042
    [42] GU P F, QI T B, CHEN L, et al. Manufacturing and analysis of VNbMoTaW refractory high-entropy alloy fabricated by selective laser melting[J]. International Journal of Refractory Metals and Hard Materials, 2022,105:105834. doi: 10.1016/j.ijrmhm.2022.105834
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  46
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-08
  • 刊出日期:  2025-02-27

目录

    /

    返回文章
    返回