Research on the control of inclusions in the vacuum induction melting process of GH4169
-
摘要: 高温合金中夹杂物是影响合金冶金质量和使用性能的主要因素,文中从冶炼工艺和原材料精选两方面研究了GH4169真空感应冶炼过程夹杂物的控制方法。首先,用12吨级真空感应炉冶炼三炉次GH4169,配料装料保持高度一致,主要差异是精炼温度逐步增加,结果表明,随温度增加1 530 、1 560 、1 590 ℃,合金液与MgO坩埚的侵蚀还原反应愈加剧烈,非金属夹杂物Al2O3、MgAl2O4被引入合金液,感应锭A端非金属夹杂物数量密度递增,分别为:83.716、171.180个/mm2和204.927个/mm2,所以应选择低温精炼,夹杂物含量降低50%以上,精炼温度大约1 525 ~1 535 ℃,精炼真空度≤1.0 Pa,时长90~150 min。其次,选择低温精炼以降低精炼工艺对夹杂物的影响,对比原材料纯净度对夹杂物的影响,结果表明,选用纯度更高的Cr、Nb和Ti原料进行冶炼,感应锭中夹杂物含量会降低30%以上。Abstract: Inclusions in superalloys are the main factors affecting the metallurgical quality and performance of the alloys. The control methods of inclusions in the vacuum induction melting process of GH4169 had been investigated from two aspects: melting process and raw material. Firstly, three batches of GH4169 were melted in a 12-ton vacuum induction furnace with highly consistent charging but different refining temperature at 1530, 1560℃, and 1590℃. The results showed that as the refining temperature increased, the erosion-reduction reaction between the alloy melt and the MgO crucible became more intense, introducing non-metallic inclusions such as Al2O3 and MgAl2O4 into the alloy melt. The number density of non-metallic inclusions at the A-end of the induction ingot increased progressively, which were 83.716, 171.180/mm2, and 204.927/mm2, respectively. Therefore, low-temperature refining should be chosen to reduce inclusion content by more than 50%, with refining temperature at around 1525~1535℃, refining vacuum degree ≤ 1.0 Pa, and duration of 1.5~2.5 h. Secondly, low-temperature refining was selected to reduce the impact of refining process on inclusions, and the impact of raw material purity on inclusions was compared. The results showed that using higher purity raw materials such as Cr, Nb and Ti for melting can reduce inclusion content in the induction ingot by more than 30%.
-
Key words:
- superalloys /
- vacuum induction melting /
- ASPEX /
- inclusion /
- purity
-
表 1 GH4169高温合金的化学成分
Table 1. Chemical compositions of GH4169 superalloy
% Ni Cr Mo Nb Al Ti Mg C Fe 50.0~55.0 16.0~20.0 2.5~3.2 5.0~5.5 0.5~1.0 0.8~1.5 ≤0.10 ≤0.10 余量 表 2 GH4169合金实际精炼工艺控制
Table 2. Smelting Process parameters of GH4169 Alloy
炉号 精炼 时间/min 温度/℃ 真空度/Pa 1# 140 1 530 ≤1.0 2# 145 1 560 ≤1.0 3# 90 1 590 ≤1.0 -
[1] KONG H H, YANG S F, QU J L, et al. Type and distribution of inclusion GH4169 nickel based superalloy[J]. Acta Astronautica Sinica, 2020,41(4):304-311. (孔豪豪, 杨树峰, 曲敬龙, 等. GH4169铸锭中夹杂物的类型及分布规律[J]. 航空学报, 2020,41(4):304-311.KONG H H, YANG S F, QU J L, et al. Type and distribution of inclusion GH4169 nickel based superalloy[J]. Acta Astronautica Sinica, 2020, 41(4): 304-311. [2] WANG N, GAO J G, YANG S L, et al. Numerical simulation of inclusions movement in vacuum induction melting[J]. China Metallurgy, 2021,31(12):20-26. (王宁, 高锦国, 杨曙磊等. 真空感应熔炼中夹杂物运动机制数值模拟[J]. 中国冶金, 2021,31(12):20-26.WANG N, GAO J G, YANG S L, et al. Numerical simulation of inclusions movement in vacuum induction melting[J]. China Metallurgy, 2021, 31(12): 20-26. [3] GAO X Y. Research on purification technology for the master ally of FGH96 powder super alloy[D]. Beijing: University of Science and Technology Beijing, 2020. (高小勇. FGH96粉末高温合金母合金的纯净化技术研究[D]. 北京:北京科技大学, 2020.GAO X Y. Research on purification technology for the master ally of FGH96 powder super alloy[D]. Beijing: University of Science and Technology Beijing, 2020. [4] LI X, ZHANG M C, ZHANG L N, et al. Effect of inclusion on mechanical properties of powder metallurgical super alloy[J]. Special Steel, 2001(1):25-28. (李晓, 张麦仓, 张丽娜, 等. 夹杂物对粉末冶金高温合金力学性能的影响[J]. 特殊钢, 2001(1):25-28. doi: 10.3969/j.issn.1003-8620.2001.01.008LI X, ZHANG M C, ZHANG L N, et al. Effect of inclusion on mechanical properties of powder metallurgical super alloy[J]. Special Steel, 2001(1): 25-28. doi: 10.3969/j.issn.1003-8620.2001.01.008 [5] LI J, JIANG S C, QI H L, et al. Evolution mechanism of inclusions in GH4169 produced by vacuum induction melting[J]. Iron Steel Vanadium Titanium, 2023,44(3):159-164. (李靖, 蒋世川, 戚慧琳, 等. GH4169真空感应过程夹杂物的演变机制[J]. 钢铁钒钛, 2023,44(3):159-164. doi: 10.7513/j.issn.1004-7638.2023.03.024LI J, JIANG S C, QI H L, et al. Evolution mechanism of inclusions in GH4169 produced by vacuum induction melting[J]. Iron Steel Vanadium Titanium, 2023, 44(3): 159-164. doi: 10.7513/j.issn.1004-7638.2023.03.024 [6] ZHENG J, YOU X G, TAN Y, et al. Removal of TiO2 and TiN inclusions in Ti3Ni alloy[J]. Materials for Mechanical Engineering, 2021,45(8):25-31. (郑俊, 游小刚, 谭毅, 等. Ti_3Ni合金中TiO2和TiN夹杂物的去除[J]. 机械工程材料, 2021,45(8):25-31.ZHENG J, YOU X G, TAN Y, et al. Removal of TiO2 and TiN inclusions in Ti3Ni alloy[J]. Materials for Mechanical Engineering, 2021, 45(8): 25-31. [7] WANG L, GAO Y L, LI M, et al. Effect of current intensity on metallurgical quality of electroslag remelting GH4169 alloy[J]. Ordnance Material Science and Engineering, 2023,46(3):87-92. (王林, 高永亮, 李猛, 等. 电流强度对电渣重熔GH4169合金冶金质量的影响[J]. 兵器材料科学与工程, 2023,46(3):87-92.WANG L, GAO Y L, LI M, et al. Effect of current intensity on metallurgical quality of electroslag remelting GH4169 alloy[J]. Ordnance Material Science and Engineering, 2023, 46(3): 87-92. [8] WANG D, YANG S F, QU J L, et al. Distribution of inclusions on surface of GH4169 ESR ingot[J]. Iron and Steel, 2021,56(2):155-161. (王迪, 杨树峰, 曲敬龙, 等. GH4169电渣重熔铸锭表层夹杂物分布规律[J]. 钢铁, 2021,56(2):155-161.WANG D, YANG S F, QU J L, et al. Distribution of inclusions on surface of GH4169 ESR ingot[J]. Iron and Steel, 2021, 56(2): 155-161. [9] WANG H. Modeling and experiment study on the magnetically controlled electroslag remelting process[D]. Shanghai: Shanghai University, 2018. (王怀. 磁控电渣重熔过程的模拟及实验研究[D]. 上海:上海大学, 2018.WANG H. Modeling and experiment study on the magnetically controlled electroslag remelting process[D]. Shanghai: Shanghai University, 2018. [10] WEI W Q, LIU B Q, JIANG J S, et al. Effect of heat treatment on microstructure and mechanical behavior of Nb-35Ti-4C alloy[J]. Rare Metal Materials and Engineering, 2017,46(3):777-782(in Chinese). (魏文庆, 刘炳强, 姜军生, 等. 热处理对Nb-35Ti-4C合金微观组织和力学机制的影响[J]. 稀有金属材料与工程, 2017,46(3):777-782.WEI W Q, LIU B Q, JIANG J S, et al. Effect of heat treatment on microstructure and mechanical behavior of Nb-35Ti-4C alloy[J]. Rare Metal Materials and Engineering, 2017, 46(3): 777-782(in Chinese). [11] GUI M X, XU Q B. Mechanism of MgO thermal reduction reaction[J]. Foreign Refractories, 2006,31(5):45-50. (桂明玺, 徐庆斌. MgO的Al热还原反应的机理[J]. 国外耐火材料, 2006,31(5):45-50.GUI M X, XU Q B. Mechanism of MgO thermal reduction reaction[J]. Foreign Refractories, 2006, 31(5): 45-50. [12] JIANG W G, GUO W J, DONG L, et al. Interfacial reaction mechanism between alumina crucible and nickle-based super alloy[J]. Special Casting & Nonferrous Alloys, 2023,43(3):308-313. (姜卫国, 郭万军, 董琳, 等. 氧化铝坩埚与高温合金的界面反应机制[J]. 特种铸造及有色合金, 2023,43(3):308-313.JIANG W G, GUO W J, DONG L, et al. Interfacial reaction mechanism between alumina crucible and nickle-based super alloy[J]. Special Casting & Nonferrous Alloys, 2023, 43(3): 308-313. [13] XUE H, GAO J G, ZHAO P, et al. Effect of addition ratio of returned materials on precipitation behavior of inclusions in superalloy[J/OL]. China Metallurgy, 1-12. (薛辉, 高锦国, 赵朋, 等. 返回料添加比例对高温合金夹杂物析出行为的影响[J/OL]. 中国冶金, 1-12.XUE H, GAO J G, ZHAO P, et al. Effect of addition ratio of returned materials on precipitation behavior of inclusions in superalloy[J/OL]. China Metallurgy, 1-12. -