Effects of cerium and calcium treatment on the inclusions in NM450 steel
-
摘要: 通过配置有AZtecFeature自动夹杂物分析模块的扫描电镜-能谱仪(SEM-EDS)和Factsage热力学计算,研究了国内某厂稀土NM450钢生产过程中的Ca处理和Ce处理对钢中夹杂物的演化过程的影响。结果表明:经过
0.0015 %Ce处理,钢液中主要夹杂物xCaO·yAl2O3被改性为低熔点xCaO·yAl2O3·zCe2O3、CeAlO3+xCaO·yAl2O3、CeAlO3+xCaO·yAl2O3+CaS和低熔点xCaO·yAl2O3·zCe2O3 +CaS夹杂物。Ce处理20 min后,钢中约53%夹杂物被去除。钢液中[Ce]扩散进入xCaO·yAl2O3形成低熔点xCaO·yAl2O3·zCe2O3夹杂物。钢液中的xCaO·yAl2O3与[Ce]反应产生CeAlO3,进而生成CeAlO3+xCaO·yAl2O3夹杂物。二次Ca处理后,含Ce夹杂物种类没有发生改变,尽管部分夹杂物转化为液态夹杂物,但同时导致了夹杂物总体数量上升,且CaS成为了主要夹杂物。这表明现行Ce处理协同双Ca处理的精炼工艺存在钙处理过量的问题。Abstract: The effects of Ca treatment and Ce treatment on the steel inclusions during the steelmaking process of Ce-contented NM450 steel were studied. The evolution process of inclusions in steel was analyzed by Scanning electron microscope-energy dispersive spectrometer ( SEM-EDS ) equipped with AZtecFeature automatic inclusion analysis module and Factsage thermodynamic calculation. After0.0015 % Ce treatment, the main inclusions in the molten steel are modified from xCaO·yAl2O3 into complex inclusions such as low melting point xCaO·yAl2O3·zCe2O3, CeAlO3+xCaO·yAl2O3, CeAlO3+xCaO·yAl2O3+CaS and low melting point xCaO·yAl2O3·zCe2O3 +CaS. About 53% of the inclusions in the steel were removed after Ce treatment for 20 minutes. [Ce] diffuses into xCaO·yAl2O3 to form low melting point xCaO·yAl2O3·zCe2O3 inclusions in the molten steel. xCaO · yAl2O3 in the molten steel reacts with [Ce] to produce CeAlO3, which in turn generates CeAlO3+xCaO · yAl2O3 inclusions. After the secondary Ca treatment, the Ce inclusion species did not change. Although some of the inclusions were converted into liquid inclusions, the overall number of inclusions increased, and CaS became the dominant inclusion. It indicates that there is a problem of excessive calcium treatment in the current Ce treatment combined with double Ca refining treatment processes.-
Key words:
- non-metallic inclusions /
- Ce treatment /
- Ca treatment /
- NM450 steel /
- inclusion modification
-
表 1 试验钢样化学成分
Table 1. Chemical composition of wear-resistant steel
% C Si Mn P Cr Mo Nb Al Ti 0.194 0.255 1.242 0.0098 0.7828 0.2825 0.0189 0.0507 0.0142 -
[1] LI H Y, ZHANG Y, XIE Z. Wear behaviors of vanadium and titanium modified NM450 steel[J]. Iron Steel Vanadium Titanium, 2019, 40(3): 60-64. (李会英, 张瑶 , 谢尊. 钒钛改性机械NM450钢的磨损性能研究[J]. 钢铁钒钛, 2019, 40(3): 60-64.LI H Y, ZHANG Y, XIE Z. Wear behaviors of vanadium and titanium modified NM450 steel[J]. Iron Steel Vanadium Titanium, 2019, 40(3): 60-64. [2] WANG Z Y, JIANG M, WANG X H. Formation and evolution behavior of inclusions in Q345D steel refining process[J]. Steel, 2022,57(2):63-72. (王章印, 姜敏, 王新华. Q345D钢精炼过程夹杂物生成及演变行为[J]. 钢铁, 2022,57(2):63-72.WANG Z Y, JIANG M, WANG X H. Formation and evolution behavior of inclusions in Q345D steel refining process[J]. Steel, 2022, 57(2): 63-72. [3] ZHANG L Q, YUAN Z. Effect of Ca treatment on the microstructure and properties of Ti high energy welded non quenched and tempered low alloy high-strength steel[J]. Materials Introduction, 2008,22(S3):166-168. (张莉芹, 袁泽. Ca处理对Ti大线能量焊接非调质低合金高强钢组织与性能的影响[J]. 材料导报, 2008,22(S3):166-168.ZHANG L Q, YUAN Z. Effect of Ca treatment on the microstructure and properties of Ti high energy welded non quenched and tempered low alloy high-strength steel[J]. Materials Introduction, 2008, 22(S3): 166-168. [4] DENG Z Y, ZHU M Y. Analysis of clean steel refining calcium treatment technology [J/OL]. Iron and Steel, 2023, 9, 26: 1-14. (邓志银, 朱苗勇. 洁净钢精炼钙处理技术探析[J/OL]. 钢铁, 2023, 9, 26: 1-14.DENG Z Y, ZHU M Y. Analysis of clean steel refining calcium treatment technology [J/OL]. Iron and Steel, 2023, 9, 26: 1-14. [5] CHENG L, YANG W, LI S S, et al. Inclusion evolution during the production of pipeline steel by the “BOF → LF → RH → calcium treatment → CC” process[J]. Steelmaking, 2019,35(6):60-66. (程林, 杨文, 李树森, 等. “BOF→LF→RH→钙处理→CC”工艺生产管线钢过程夹杂物演变[J]. 炼钢, 2019,35(6):60-66.CHENG L, YANG W, LI S S, et al. Inclusion evolution during the production of pipeline steel by the “BOF → LF → RH → calcium treatment → CC” process[J]. Steelmaking, 2019, 35(6): 60-66. [6] YU J S, CHEN J Z, CHEN X Y, et al. Exploration of the development future of rare earth treatment steel[J]. Rare Earth, 1983(2):53-59. (余景生, 陈继志, 陈希颖, 等. 稀土处理钢发展前途的探讨[J]. 稀土, 1983(2):53-59.YU J S, CHEN J Z, CHEN X Y, et al. Exploration of the development future of rare earth treatment steel[J]. Rare Earth, 1983(2): 53-59. [7] XU D F, CHEN K H, HU G Y, et al. The effect of trace rare earth Ce on the microstructure and corrosion properties of Al-Zn-Mg aluminum alloy[J]. Materials Introduction, 2020, 34(8):8100-8105. (徐道芬, 陈康华, 胡桂云, 等. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020,34(8):8100-8105. doi: 10.11896/cldb.19030226XU D F, CHEN K H, HU G Y, et al. The effect of trace rare earth Ce on the microstructure and corrosion properties of Al-Zn-Mg aluminum alloy[J]. Materials Introduction, 2020, 34(8): 8100-8105. doi: 10.11896/cldb.19030226 [8] WANG H, BAO Y P, ZHI J G, et al. Effect of rare earth Ce on the morphology and distribution of Al2O3 inclusions in high strength IF steel containing phosphorus during continuous casting and rolling process[J]. ISIJ International, 2021, 61(3): 657-666. [9] WANG Y, LIU C. Evolution and deformability of inclusions in Al-killed steel with rare Earth-Alkali metals (Ca or Mg) combined treatment[J]. Journal of Rare Earths, 2023,41(9):1459-1466. doi: 10.1016/j.jre.2022.08.005 [10] WANG L, SONG B, YANG Z B, et al. Effects of Mg and La on the evolution of inclusions and microstructure in Ca-Ti treated steel[J]. International Journal of Minerals, Metallurgy and Materials 28 (2021): 1940-1948. [11] WANG L C, TIAN J L, REN J, et al. The effect of Ce/Mg treatment on the cleanliness of M50 bearing steel[J]. Journal of Engineering Science, 2022,44(9):1507-1515. (王礼超, 田家龙, 任吉, 等. Ce/Mg处理对M50轴承钢洁净度的影响[J]. 工程科学学报, 2022,44(9):1507-1515. doi: 10.3321/j.issn.1001-053X.2022.9.bjkjdxxb202209005WANG L C, TIAN J L, REN J, et al. The effect of Ce/Mg treatment on the cleanliness of M50 bearing steel[J]. Journal of Engineering Science, 2022, 44(9): 1507-1515. doi: 10.3321/j.issn.1001-053X.2022.9.bjkjdxxb202209005 [12] YANG C, LUAN Y, LI D, et al. Effects of rare earth elements on inclusions and impact toughness of high-carbon chromium bearing steel[J]. Journal of Materials Science & Technology, 2019, 35(7): 1298-1308. [13] WANG X, WU Z, LI B, et al. Inclusions modification by rare earth in steel and the resulting properties: a review[J]. Journal of Rare Earths, 2023. [14] LI Y, LIU C, ZHANG T, et al. Inclusions modification in heat resistant steel containing rare earth elements[J]. Ironmaking & Steelmaking, 2018,45(1):76-82. [15] GAO S, WANG M, GUO J L, et al. Characterization transformation of inclusions using rare earth Ce treatment on Al‐killed titanium alloyed interstitial free steel[J]. Steel Research International, 2019,90(10):1900194. doi: 10.1002/srin.201900194 [16] LIU H Z, ZHANG J, ZHANG J, et al. First-principles study on the effect of rare earth element cerium on the modification and corrosion of non-metallic inclusions in steel[J]. Journal of Engineering Science, 2022,44(9):1516-1528. (刘瀚泽, 张静, 张继, 等. 稀土元素铈对钢中非金属夹杂物改性和腐蚀影响的第一性原理研究[J]. 工程科学学报, 2022,44(9):1516-1528. doi: 10.3321/j.issn.1001-053X.2022.9.bjkjdxxb202209006LIU H Z, ZHANG J, ZHANG J, et al. First-principles study on the effect of rare earth element cerium on the modification and corrosion of non-metallic inclusions in steel[J]. Journal of Engineering Science, 2022, 44(9): 1516-1528. doi: 10.3321/j.issn.1001-053X.2022.9.bjkjdxxb202209006 [17] YANG J, LI T T. Research progress on inclusion control in rare earth treated non oriented silicon steel[J]. Steel, 2022,57(7):1-15. (杨健, 李婷婷. 稀土处理的无取向硅钢夹杂物控制研究进展[J]. 钢铁, 2022,57(7):1-15.YANG J, LI T T. Research progress on inclusion control in rare earth treated non oriented silicon steel[J]. Steel, 2022, 57(7): 1-15. [18] WANG Y G, LIU C J, QIU J Y, et al. The effect of aluminum on non-metallic inclusions in rare earth heat-resistant steel[J]. Steel, 2022,57(4):52-57. (王野光, 刘承军, 邱吉雨, 等. 铝对稀土耐热钢中非金属夹杂物的影响[J]. 钢铁, 2022,57(4):52-57.WANG Y G, LIU C J, QIU J Y, et al. The effect of aluminum on non-metallic inclusions in rare earth heat-resistant steel[J]. Steel, 2022, 57(4): 52-57. [19] QIU J, WANG H, HUO G, et al. Phase diagram of CaO–Al2O3-CeO x slag system at 1600 °C in reducing atmosphere and air atmosphere[J]. Ceramics International, 2023,49(12):20447-20455. doi: 10.1016/j.ceramint.2023.03.173 [20] MIAO Z Q. Formation mechanism and key metallurgical process of large size inclusions in high-end bearing steel[D]. Beijing: University of Science and Technology Beijing, 2023. (苗志奇. 高端轴承钢中大尺寸夹杂物形成机理与关键冶金工艺[D]. 北京:北京科技大学, 2023MIAO Z Q. Formation mechanism and key metallurgical process of large size inclusions in high-end bearing steel[D]. Beijing: University of Science and Technology Beijing, 2023. [21] YUE Q, CHEN Z, ZOU Z S. Mechanism analysis of agglomeration of non-metallic inclusions in molten steel[J]. Steel, 2008(11):37-40. (岳强, 陈舟, 邹宗树. 钢液中非金属夹杂物团聚的机理分析[J]. 钢铁, 2008(11):37-40. doi: 10.3321/j.issn:0449-749X.2008.11.007YUE Q, CHEN Z, ZOU Z S. Mechanism analysis of agglomeration of non-metallic inclusions in molten steel[J]. Steel, 2008(11): 37-40. doi: 10.3321/j.issn:0449-749X.2008.11.007 [22] GENG R M, LI J, SHI C B, et al. Evolution of inclusions with Ce addition and Ca treatment in Al-killed steel during RH refining process[J]. ISIJ International, 2021,61(5):1506-1513. doi: 10.2355/isijinternational.ISIJINT-2020-672 [23] KITANO R, ISHII M, UO M, et al. Thermodynamic properties of the Cao–AlO1.5–CeO1.5 system[J]. ISIJ International, 2016,56(11):1893-1901. doi: 10.2355/isijinternational.ISIJINT-2016-201 -