中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铈和钙处理对NM450钢中夹杂物的影响

郭树豪 刘金瑞 高军 樊立峰 崔衡

郭树豪, 刘金瑞, 高军, 樊立峰, 崔衡. 铈和钙处理对NM450钢中夹杂物的影响[J]. 钢铁钒钛, 2025, 46(1): 158-164. doi: 10.7513/j.issn.1004-7638.2025.01.022
引用本文: 郭树豪, 刘金瑞, 高军, 樊立峰, 崔衡. 铈和钙处理对NM450钢中夹杂物的影响[J]. 钢铁钒钛, 2025, 46(1): 158-164. doi: 10.7513/j.issn.1004-7638.2025.01.022
GUO Shuhao, LIU Jinrui, GAO Jun, FAN Lifeng, CUI Heng. Effects of cerium and calcium treatment on the inclusions in NM450 steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 158-164. doi: 10.7513/j.issn.1004-7638.2025.01.022
Citation: GUO Shuhao, LIU Jinrui, GAO Jun, FAN Lifeng, CUI Heng. Effects of cerium and calcium treatment on the inclusions in NM450 steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 158-164. doi: 10.7513/j.issn.1004-7638.2025.01.022

铈和钙处理对NM450钢中夹杂物的影响

doi: 10.7513/j.issn.1004-7638.2025.01.022
基金项目: 中央引导地方科技发展资金(2022ZY0001)。
详细信息
    作者简介:

    郭树豪,1996年出生,男,河北邯郸人,硕士研究生,从事钢铁冶金夹杂物研究, E-mail:13366568362@163.com

    通讯作者:

    崔 衡,1978年生,男,内蒙古包头市人,博士生导师,研究员,从事钢铁冶金研究,E-mail:cuiheng@ustb.edu.cn

  • 中图分类号: TF76,TG115

Effects of cerium and calcium treatment on the inclusions in NM450 steel

  • 摘要: 通过配置有AZtecFeature自动夹杂物分析模块的扫描电镜-能谱仪(SEM-EDS)和Factsage热力学计算,研究了国内某厂稀土NM450钢生产过程中的Ca处理和Ce处理对钢中夹杂物的演化过程的影响。结果表明:经过0.0015%Ce处理,钢液中主要夹杂物xCaO·yAl2O3被改性为低熔点xCaO·yAl2O3·zCe2O3、CeAlO3+xCaO·yAl2O3、CeAlO3+xCaO·yAl2O3+CaS和低熔点xCaO·yAl2O3·zCe2O3 +CaS夹杂物。Ce处理20 min后,钢中约53%夹杂物被去除。钢液中[Ce]扩散进入xCaO·yAl2O3形成低熔点xCaO·yAl2O3·zCe2O3夹杂物。钢液中的xCaO·yAl2O3与[Ce]反应产生CeAlO3,进而生成CeAlO3+xCaO·yAl2O3夹杂物。二次Ca处理后,含Ce夹杂物种类没有发生改变,尽管部分夹杂物转化为液态夹杂物,但同时导致了夹杂物总体数量上升,且CaS成为了主要夹杂物。这表明现行Ce处理协同双Ca处理的精炼工艺存在钙处理过量的问题。
  • 图  1  Ce处理、Ca处理和钢液取样时机示意

    Figure  1.  Schematic diagram of Ce-Ca treatment and steel liquid sampling timing

    图  2  钢中夹杂物占比、数密度和和平均尺寸统计

    Figure  2.  Statistical diagram of the proportion, number density and average size of inclusions in steels

    图  3  加Ce前钢中典型夹杂物的形貌和EDS面扫描结果

    Figure  3.  Morphology and EDS elemental maps of typical inclusions in steels before Ce treatment

    图  4  Ce处理后钢中典型夹杂物的形貌和EDS面扫描结果

    (a) 低熔点xCaO·yAl2O3·zCe2O3夹杂物;(b) CeAlO3+xCaO·yAl2O3复合夹杂物;(c) CeAlO3+xCaO·yAl2O3+CaS复合夹杂物

    Figure  4.  Morphologies and EDS elemental maps of typical inclusions in steels after Ce treatment

    图  5  Ca处理后钢中典型夹杂物的形貌和EDS面扫描结果

    (a) CaS+低熔点xCaO·yAl2O3·zCe2O3复合夹杂物;(b) CaS夹杂物

    Figure  5.  Morphologies and EDS elemental maps of typical inclusions in steels after secondary Ca treatment

    图  6  NM450钢体系中1600 ℃下Ca-Ce平衡图

    Figure  6.  Stability diagram of NM450 steel system at 1600

    图  7  Ce-Al-Ca-O夹杂物在CaO-AlO1.5-CeO1.5相图中的组成分布

    Figure  7.  Composition distribution of Ce-Al-Ca-O inclusions in the CaO-AlO1.5-CeO1.5 phase diagram

    表  1  试验钢样化学成分

    Table  1.   Chemical composition of wear-resistant steel %

    CSiMnPCrMoNbAlTi
    0.1940.2551.2420.00980.78280.28250.01890.05070.0142
    下载: 导出CSV
  • [1] LI H Y, ZHANG Y, XIE Z. Wear behaviors of vanadium and titanium modified NM450 steel[J]. Iron Steel Vanadium Titanium, 2019, 40(3): 60-64. (李会英, 张瑶 , 谢尊. 钒钛改性机械NM450钢的磨损性能研究[J]. 钢铁钒钛, 2019, 40(3): 60-64.

    LI H Y, ZHANG Y, XIE Z. Wear behaviors of vanadium and titanium modified NM450 steel[J]. Iron Steel Vanadium Titanium, 2019, 40(3): 60-64.
    [2] WANG Z Y, JIANG M, WANG X H. Formation and evolution behavior of inclusions in Q345D steel refining process[J]. Steel, 2022,57(2):63-72. (王章印, 姜敏, 王新华. Q345D钢精炼过程夹杂物生成及演变行为[J]. 钢铁, 2022,57(2):63-72.

    WANG Z Y, JIANG M, WANG X H. Formation and evolution behavior of inclusions in Q345D steel refining process[J]. Steel, 2022, 57(2): 63-72.
    [3] ZHANG L Q, YUAN Z. Effect of Ca treatment on the microstructure and properties of Ti high energy welded non quenched and tempered low alloy high-strength steel[J]. Materials Introduction, 2008,22(S3):166-168. (张莉芹, 袁泽. Ca处理对Ti大线能量焊接非调质低合金高强钢组织与性能的影响[J]. 材料导报, 2008,22(S3):166-168.

    ZHANG L Q, YUAN Z. Effect of Ca treatment on the microstructure and properties of Ti high energy welded non quenched and tempered low alloy high-strength steel[J]. Materials Introduction, 2008, 22(S3): 166-168.
    [4] DENG Z Y, ZHU M Y. Analysis of clean steel refining calcium treatment technology [J/OL]. Iron and Steel, 2023, 9, 26: 1-14. (邓志银, 朱苗勇. 洁净钢精炼钙处理技术探析[J/OL]. 钢铁, 2023, 9, 26: 1-14.

    DENG Z Y, ZHU M Y. Analysis of clean steel refining calcium treatment technology [J/OL]. Iron and Steel, 2023, 9, 26: 1-14.
    [5] CHENG L, YANG W, LI S S, et al. Inclusion evolution during the production of pipeline steel by the “BOF → LF → RH → calcium treatment → CC” process[J]. Steelmaking, 2019,35(6):60-66. (程林, 杨文, 李树森, 等. “BOF→LF→RH→钙处理→CC”工艺生产管线钢过程夹杂物演变[J]. 炼钢, 2019,35(6):60-66.

    CHENG L, YANG W, LI S S, et al. Inclusion evolution during the production of pipeline steel by the “BOF → LF → RH → calcium treatment → CC” process[J]. Steelmaking, 2019, 35(6): 60-66.
    [6] YU J S, CHEN J Z, CHEN X Y, et al. Exploration of the development future of rare earth treatment steel[J]. Rare Earth, 1983(2):53-59. (余景生, 陈继志, 陈希颖, 等. 稀土处理钢发展前途的探讨[J]. 稀土, 1983(2):53-59.

    YU J S, CHEN J Z, CHEN X Y, et al. Exploration of the development future of rare earth treatment steel[J]. Rare Earth, 1983(2): 53-59.
    [7] XU D F, CHEN K H, HU G Y, et al. The effect of trace rare earth Ce on the microstructure and corrosion properties of Al-Zn-Mg aluminum alloy[J]. Materials Introduction, 2020, 34(8):8100-8105. (徐道芬, 陈康华, 胡桂云, 等. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020,34(8):8100-8105. doi: 10.11896/cldb.19030226

    XU D F, CHEN K H, HU G Y, et al. The effect of trace rare earth Ce on the microstructure and corrosion properties of Al-Zn-Mg aluminum alloy[J]. Materials Introduction, 2020, 34(8): 8100-8105. doi: 10.11896/cldb.19030226
    [8] WANG H, BAO Y P, ZHI J G, et al. Effect of rare earth Ce on the morphology and distribution of Al2O3 inclusions in high strength IF steel containing phosphorus during continuous casting and rolling process[J]. ISIJ International, 2021, 61(3): 657-666.
    [9] WANG Y, LIU C. Evolution and deformability of inclusions in Al-killed steel with rare Earth-Alkali metals (Ca or Mg) combined treatment[J]. Journal of Rare Earths, 2023,41(9):1459-1466. doi: 10.1016/j.jre.2022.08.005
    [10] WANG L, SONG B, YANG Z B, et al. Effects of Mg and La on the evolution of inclusions and microstructure in Ca-Ti treated steel[J]. International Journal of Minerals, Metallurgy and Materials 28 (2021): 1940-1948.
    [11] WANG L C, TIAN J L, REN J, et al. The effect of Ce/Mg treatment on the cleanliness of M50 bearing steel[J]. Journal of Engineering Science, 2022,44(9):1507-1515. (王礼超, 田家龙, 任吉, 等. Ce/Mg处理对M50轴承钢洁净度的影响[J]. 工程科学学报, 2022,44(9):1507-1515. doi: 10.3321/j.issn.1001-053X.2022.9.bjkjdxxb202209005

    WANG L C, TIAN J L, REN J, et al. The effect of Ce/Mg treatment on the cleanliness of M50 bearing steel[J]. Journal of Engineering Science, 2022, 44(9): 1507-1515. doi: 10.3321/j.issn.1001-053X.2022.9.bjkjdxxb202209005
    [12] YANG C, LUAN Y, LI D, et al. Effects of rare earth elements on inclusions and impact toughness of high-carbon chromium bearing steel[J]. Journal of Materials Science & Technology, 2019, 35(7): 1298-1308.
    [13] WANG X, WU Z, LI B, et al. Inclusions modification by rare earth in steel and the resulting properties: a review[J]. Journal of Rare Earths, 2023.
    [14] LI Y, LIU C, ZHANG T, et al. Inclusions modification in heat resistant steel containing rare earth elements[J]. Ironmaking & Steelmaking, 2018,45(1):76-82.
    [15] GAO S, WANG M, GUO J L, et al. Characterization transformation of inclusions using rare earth Ce treatment on Al‐killed titanium alloyed interstitial free steel[J]. Steel Research International, 2019,90(10):1900194. doi: 10.1002/srin.201900194
    [16] LIU H Z, ZHANG J, ZHANG J, et al. First-principles study on the effect of rare earth element cerium on the modification and corrosion of non-metallic inclusions in steel[J]. Journal of Engineering Science, 2022,44(9):1516-1528. (刘瀚泽, 张静, 张继, 等. 稀土元素铈对钢中非金属夹杂物改性和腐蚀影响的第一性原理研究[J]. 工程科学学报, 2022,44(9):1516-1528. doi: 10.3321/j.issn.1001-053X.2022.9.bjkjdxxb202209006

    LIU H Z, ZHANG J, ZHANG J, et al. First-principles study on the effect of rare earth element cerium on the modification and corrosion of non-metallic inclusions in steel[J]. Journal of Engineering Science, 2022, 44(9): 1516-1528. doi: 10.3321/j.issn.1001-053X.2022.9.bjkjdxxb202209006
    [17] YANG J, LI T T. Research progress on inclusion control in rare earth treated non oriented silicon steel[J]. Steel, 2022,57(7):1-15. (杨健, 李婷婷. 稀土处理的无取向硅钢夹杂物控制研究进展[J]. 钢铁, 2022,57(7):1-15.

    YANG J, LI T T. Research progress on inclusion control in rare earth treated non oriented silicon steel[J]. Steel, 2022, 57(7): 1-15.
    [18] WANG Y G, LIU C J, QIU J Y, et al. The effect of aluminum on non-metallic inclusions in rare earth heat-resistant steel[J]. Steel, 2022,57(4):52-57. (王野光, 刘承军, 邱吉雨, 等. 铝对稀土耐热钢中非金属夹杂物的影响[J]. 钢铁, 2022,57(4):52-57.

    WANG Y G, LIU C J, QIU J Y, et al. The effect of aluminum on non-metallic inclusions in rare earth heat-resistant steel[J]. Steel, 2022, 57(4): 52-57.
    [19] QIU J, WANG H, HUO G, et al. Phase diagram of CaO–Al2O3-CeO x slag system at 1600 °C in reducing atmosphere and air atmosphere[J]. Ceramics International, 2023,49(12):20447-20455. doi: 10.1016/j.ceramint.2023.03.173
    [20] MIAO Z Q. Formation mechanism and key metallurgical process of large size inclusions in high-end bearing steel[D]. Beijing: University of Science and Technology Beijing, 2023. (苗志奇. 高端轴承钢中大尺寸夹杂物形成机理与关键冶金工艺[D]. 北京:北京科技大学, 2023

    MIAO Z Q. Formation mechanism and key metallurgical process of large size inclusions in high-end bearing steel[D]. Beijing: University of Science and Technology Beijing, 2023.
    [21] YUE Q, CHEN Z, ZOU Z S. Mechanism analysis of agglomeration of non-metallic inclusions in molten steel[J]. Steel, 2008(11):37-40. (岳强, 陈舟, 邹宗树. 钢液中非金属夹杂物团聚的机理分析[J]. 钢铁, 2008(11):37-40. doi: 10.3321/j.issn:0449-749X.2008.11.007

    YUE Q, CHEN Z, ZOU Z S. Mechanism analysis of agglomeration of non-metallic inclusions in molten steel[J]. Steel, 2008(11): 37-40. doi: 10.3321/j.issn:0449-749X.2008.11.007
    [22] GENG R M, LI J, SHI C B, et al. Evolution of inclusions with Ce addition and Ca treatment in Al-killed steel during RH refining process[J]. ISIJ International, 2021,61(5):1506-1513. doi: 10.2355/isijinternational.ISIJINT-2020-672
    [23] KITANO R, ISHII M, UO M, et al. Thermodynamic properties of the Cao–AlO1.5–CeO1.5 system[J]. ISIJ International, 2016,56(11):1893-1901. doi: 10.2355/isijinternational.ISIJINT-2016-201
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  24
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-09
  • 刊出日期:  2025-02-27

目录

    /

    返回文章
    返回