中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GH3128蠕变损伤模型预测以及有限元模拟

康晓东 田子航 刘泳 张申 方龙飞

康晓东, 田子航, 刘泳, 张申, 方龙飞. GH3128蠕变损伤模型预测以及有限元模拟[J]. 钢铁钒钛, 2025, 46(1): 165-169. doi: 10.7513/j.issn.1004-7638.2025.01.023
引用本文: 康晓东, 田子航, 刘泳, 张申, 方龙飞. GH3128蠕变损伤模型预测以及有限元模拟[J]. 钢铁钒钛, 2025, 46(1): 165-169. doi: 10.7513/j.issn.1004-7638.2025.01.023
KANG Xiaodong, TIAN Zihang, LIU Yong, ZHANG Shen, FANG Longfei. Creep damage model prediction and finite element simulation of GH3128[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 165-169. doi: 10.7513/j.issn.1004-7638.2025.01.023
Citation: KANG Xiaodong, TIAN Zihang, LIU Yong, ZHANG Shen, FANG Longfei. Creep damage model prediction and finite element simulation of GH3128[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 165-169. doi: 10.7513/j.issn.1004-7638.2025.01.023

GH3128蠕变损伤模型预测以及有限元模拟

doi: 10.7513/j.issn.1004-7638.2025.01.023
详细信息
    作者简介:

    康晓东,1998年出生,男,山西大同人,硕士,研究方向:金属材料的力学性能,E-mail:kxdkyb05@126.com

  • 中图分类号: TF76,TG132.3

Creep damage model prediction and finite element simulation of GH3128

  • 摘要: 从蠕变损伤方程构建和有限元模拟两方面对GH3128合金在950 ℃条件下的高温蠕变行为进行分析。首先,结合K-R模型、Sinh模型及Liu-M模型进行蠕变损伤方程构建,继而对模型寿命预测和损伤行为进行对比分析,发现应力100、90 MPa和80 MPa下寿命预测相对误差最大仅为10.8%,累积相对误差Sinh模型最小为18.3%。而对损伤行为的对比发现Sinh模型和Liu-M模型较K-R模型损伤演化过程要缓和,有利于在有限元模拟时网格的划分,由此得出:对GH3128合金蠕变行为预测效果最好的是Sinh模型。最后,利用ABAQUS软件中Creep子程序接口,通过二次开发编写Sinh模型,有限元模拟的结果表明Sinh模型对GH3128合金蠕变行为分析较为准确和高效。
  • 图  1  950 ℃ GH3128蠕变时间曲线[13]

    Figure  1.  Creep time curve of GH3128 at 950 ℃[13]

    图  2  蠕变损伤模拟曲线

    Figure  2.  Creep damage simulation curves

    图  3  ABAQUS子程序流程

    Figure  3.  ABAQUS subroutine flow

    图  4  试验数据与Sinh蠕变模型模拟结果

    Figure  4.  Experimental data and simulation results of the Sinh creep model

    表  1  三种损伤模型方程参数

    Table  1.   Equation parameters of the three damage models

    模型参数
    K-R模型$ A $:4.36 e-15;$ {n}_{1} $:4.71;$ {M}_{1} $:4.38 e-14;$ \varnothing $:15.01;$ {\chi }_{1} $:4.31
    Liu-M模型$ C $:4.36 e-15;$ {n}_{2} $:4.71;$ {M}_{3} $:6.02 e-13;$ p $:4.31;$ q $:4.32
    Sinh模型$ {\rm B} $:1.34 e-7;$ {\mathrm{\sigma }}_{\mathrm{s}} $:19.41;$ {\sigma }_{t} $:22.80;
    $ {M}_{2} $:6.15 e-6;$ \phi $:4.50;λ:2.50;$ {\chi }_{2} $:1
    下载: 导出CSV

    表  2  模型蠕变寿命预测及误差对比

    Table  2.   Comparison of creep life prediction and errors of the models

    应力/
    MPa
    试验
    寿命/s
    K-R模型 Sinh模型 Liu-M模型
    蠕变
    寿命/s
    误差/% 蠕变
    寿命/s
    误差/% 蠕变
    寿命/s
    误差/%
    100 3696.8 3914.5 5.9 4049.7 9.5 3984.7 7.8
    90 6917.5 6164.4 10.8 6322.11 8.6 6275.0 9.3
    80 9721.0 10241.5 5.2 9742.7 0.2 10425.2 7.2
    下载: 导出CSV
  • [1] LIU T Y, LAI Y, FU J H, et al. High temperature rheological behavior and microstructure evolution of GH3128 alloy[J]. Metal Heat Treatment, 2020,45(6):141-148. (刘庭耀, 赖宇, 付建辉, 等. GH3128合金的高温流变行为与组织演变规律[J]. 金属热处理, 2020,45(6):141-148.

    LIU T Y, LAI Y, FU J H, et al. High temperature rheological behavior and microstructure evolution of GH3128 alloy[J]. Metal Heat Treatment, 2020, 45(6): 141-148.
    [2] YANG B, WU S H, BAO Z N, et al. Thermal deformation behavior and phenomenological constitutive model of GH3128 alloy[J]. Forging Technology, 2022,47(5):226-234. (杨波, 吴诗豪, 包振男, 等. GH3128合金热变形行为与唯象本构模型[J]. 锻压技术, 2022,47(5):226-234.

    YANG B, WU S H, BAO Z N, et al. Thermal deformation behavior and phenomenological constitutive model of GH3128 alloy[J]. Forging Technology, 2022, 47(5): 226-234.
    [3] YUAN Z F, JIANG J, CHENG Z W, et al. Study on high temperature mechanical properties of fiber laser GH3128 lap joint[J]. China Laser, 2022,49(21):170-178. (袁振飞, 蒋劲, 程智伟, 等. 光纤激光GH3128搭接接头高温力学性能研究[J]. 中国激光, 2022,49(21):170-178.

    YUAN Z F, JIANG J, CHENG Z W, et al. Study on high temperature mechanical properties of fiber laser GH3128 lap joint[J]. China Laser, 2022, 49(21): 170-178.
    [4] AN F P, LIU X W, ZHANG L J, et al. Dramatic improvement of the strength of laser welded joints of Nb521 to GH3128 by adding pure copper as an interlayer[J]. International Journal of Refractory Metals and Hard Materials, 2023,116:106367. doi: 10.1016/j.ijrmhm.2023.106367
    [5] XU G, PENG L D, JIN H W. Creep damage characteristics and constitutive model of water-bearing coal[J]. Mining Research and Development, 2023,43(9):152-157. (徐刚, 彭来栋, 金洪伟. 含水煤体蠕变损伤特性及本构模型研究[J]. 矿业研究与开发, 2023,43(9):152-157.

    XU G, PENG L D, JIN H W. Creep damage characteristics and constitutive model of water-bearing coal[J]. Mining Research and Development, 2023, 43(9): 152-157.
    [6] PAN X K, ZHOU X P, ZOU Y Y, et al. Creep mechanical properties and creep damage model of sandstone considering temperature effect based on acoustic emission[J]. Fatigue Fracture of Engineering Materials Structures, 2023,47(1):35-55.
    [7] MAO X P, GUO Q, ZHANG S Y, et al. Experimental study on creep damage of nickel-based alloy C276[J]. Nuclear Power Engineering, 2013,34(2):86-89. (毛雪平, 郭琦, 张声远, 等. 镍基合金C276蠕变损伤的实验研究[J]. 核动力工程, 2013,34(2):86-89. doi: 10.3969/j.issn.0258-0926.2013.02.020

    MAO X P, GUO Q, ZHANG S Y, et al. Experimental study on creep damage of nickel-based alloy C276[J]. Nuclear Power Engineering, 2013, 34(2): 86-89. doi: 10.3969/j.issn.0258-0926.2013.02.020
    [8] STEWART C M, GORDON A P. Strain and damage-based analytical methods to determine the Kachanov–Rabotnov tertiary creep-damage constants[J]. International Journal of Damage Mechanics, 2012,21(8):1186-1201. doi: 10.1177/1056789511430519
    [9] HAQUE M S, STEWART C M. Finite element analysis of waspaloy using sinh creep-damage constitutive model under triaxial stress state[J]. Journal of Pressure Vessel Technology, 2016,138(3):031408. doi: 10.1115/1.4032704
    [10] ZHANGN Q, LIU X B, ZHU L, et al. Comparison of creep damage models based on P91 steel[J]. Journal of Northwest University: Natural Science, 2017,47(5):711-716. (张琦, 刘新宝, 朱麟, 等. 基于P91钢的蠕变损伤模型比较[J]. 西北大学学报: 自然科学版, 2017,47(5):711-716.

    ZHANGN Q, LIU X B, ZHU L, et al. Comparison of creep damage models based on P91 steel[J]. Journal of Northwest University: Natural Science, 2017, 47(5): 711-716.
    [11] MURAKAMI S, LIU Y, MIZUO M. Computational methods for creep fracture analysis by damage mechanics[J]. Compute methods in applied mechanics and engineering, 2000,183(1-2):15-33. doi: 10.1016/S0045-7825(99)00209-1
    [12] ZHAO L. Study on creep damage mechanism of P92 steel welded joints[D]. Tianjin: Tianjin University, 2009. (赵雷. P92钢焊接接头的蠕变损伤机理研究[D]. 天津:天津大学, 2009.

    ZHAO L. Study on creep damage mechanism of P92 steel welded joints[D]. Tianjin: Tianjin University, 2009.
    [13] XU D F. Study on creep characteristics of cooling tube of GH3128 superalloy intermediate heat exchanger[D]. Qinhuangdao: Yanshan University, 2019. (徐殿峰. GH3128高温合金中间换热器冷却管蠕变特性研究[D]. 秦皇岛:燕山大学, 2019.

    XU D F. Study on creep characteristics of cooling tube of GH3128 superalloy intermediate heat exchanger[D]. Qinhuangdao: Yanshan University, 2019.
    [14] KACHANOV L M. Rupture time under creep conditions[J]. International Journal of Fracture, 1999,97(1):11-18.
    [15] RABOTNOV Y N, LECKIE F A, PRAGERW W. Creep problems in structural members[J]. Journal of Applied Mechanics, 1970,37(1):249.
    [16] CHEN X, ZHOU G Y, TU S D. Finite element analysis of creep crack propagation of T-brazed joint[J]. Mechanical Strength, 2014,36(5):790-796. (陈兴, 周帼彦, 涂善东. T型钎焊接头蠕变裂纹扩展的有限元分析[J]. 机械强度, 2014,36(5):790-796.

    CHEN X, ZHOU G Y, TU S D. Finite element analysis of creep crack propagation of T-brazed joint[J]. Mechanical Strength, 2014, 36(5): 790-796.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  30
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-03
  • 刊出日期:  2025-02-27

目录

    /

    返回文章
    返回