Sliding wear behavior of HB550 grade low-alloy martensite wear-resistant steel
-
摘要: 通过光学显微镜、扫描电镜、拉伸试验、维氏硬度计等设备分析了新开发的HB550低合金高强耐磨钢的微观组织和力学性能;利用磨损试验机和多功能材料表面性能综合测试仪研究了HB550马氏体耐磨钢在10、50 N和90 N载荷下的干滑动摩擦磨损行为和摩擦系数。结果表明,HB550低合金高强耐磨钢组织为回火马氏体,其屈服强度和抗拉强度均值分别为
1521 MPa和1 874 MPa,5 mm厚度试样在−40 ℃的低温冲击吸收功均值为18 J。随着载荷的增加,HB550钢的磨损失重呈先增加后下降趋势,而摩擦系数单调降低。HB550钢在低载荷下的磨损机制主要是磨粒磨损和黏着磨损,在高载荷下的磨损机制以黏着磨损为主,并伴随着氧化磨损。试验为HB550及以上高端耐磨钢的开发和应用提供了理论基础。Abstract: The microstructure and mechanical properties of the newly developed HB550 low-alloy high-strength wear-resistant steel were studied through optical microscope, scanning electron microscopy, tensile tests, and Vickers hardness tests. Meanwhile, the sliding wear behavior and the friction coefficient of high grade HB550 martensite wear-resistant steel under the loads of 10, 50 N and 90 N were systematically investigated by ML-100C wear testing machine and BMT-I multifunctional material surface performance tester, respectively. The results show that the microstructure of HB550 low-alloy high-strength wear-resistant steel was mainly tempered martensite. The mean yield strength and tensile strength as well as low temperature impact energy at −40 ℃ with 5 mm thickness of this steel were 1521 MPa, 1874 MPa and 18 J, respectively. Moreover, with increasing the load, the wear mass loss of HB550 steel increased first and then decreased, while the friction coefficient decreased monotonously. The wear mechanism of the developed steel grade HB550 under lower loads is mainly abrasive wear and adhesive wear, and the wear mechanism under high loads is mainly adhesive wear accompanied by oxidative wear. The research results provide a theoretical basis for the development and application of high-end wear-resistant steel HB550 and above.-
Key words:
- HB550 steel /
- sliding wear /
- friction coefficient /
- tempered martensite /
- mechanical property
-
表 1 试验钢化学成分
Table 1. Chemical composition of the experimental steel
% 钢种 C Si Mn Ti Mo B Fe HB550 0.38 0.36 1.52 0.076 0.33 0.002 余量 表 2 HB550钢的力学性能
Table 2. Mechanical properties of HB550 steel
试验钢 抗拉强度/MPa 屈服强度/MPa −40 ℃低温冲击吸收功/J 延伸率/% 布氏硬度 HB550 1874±23 1521 ±1218±2 7±0.2 554±8 -
[1] WANG H F. Development trend and future development trend of metal wear-resistant materials in China[J]. Foundry, 2010(1):577-591. (王洪发. 中国金属耐磨材料的发展态势与未来的发展趋向[J]. 铸造, 2010(1):577-591.WANG H F. Development trend and future development trend of metal wear-resistant materials in China[J]. Foundry, 2010(1): 577-591. [2] WEN S T. Principles of tribology[M]. Beijing: Tsinghua University Press, 1990. (温诗涛. 摩擦学原理[M]. 北京: 清华大学出版社, 1990.WEN S T. Principles of tribology[M]. Beijing: Tsinghua University Press, 1990. [3] HAN P, ZHANG X P, LIN B, et al. Wear resistance of H450 and NM450 low alloy steels[J]. Materials Protection, 2020,53(2):67-69, 125. (韩嫔, 张绪平, 林波, 等. H450和NM450低合金钢的耐磨性能[J]. 材料保护, 2020,53(2):67-69, 125.HAN P, ZHANG X P, LIN B, et al. Wear resistance of H450 and NM450 low alloy steels[J]. Materials Protection, 2020, 53(2): 67-69, 125. [4] GAO Q, Wang Q, ZHANG Q X, et al. Research and development of low-cost and high-toughness NM500 steel plate[J]. Journal of Iron and Steel Research, 2024, 36(6): 743-751. (高擎, 王麒, 张青学, 等. 低成本高韧性NM500钢板的研究及开发[J]. 钢铁研究学报: 2024, 36(6): 743-751.GAO Q, Wang Q, ZHANG Q X, et al. Research and development of low-cost and high-toughness NM500 steel plate[J]. Journal of Iron and Steel Research, 2024, 36(6): 743-751. [5] GUO X B. Study on microstructure properties of NM550 low-alloy high-strength wear-resistant steel[D]. Shenyang: Northeastern University, 2017. (郭秀斌. NM550级低合金高强度耐磨钢的组织性能研究[D]. 沈阳: 东北大学, 2017.GUO X B. Study on microstructure properties of NM550 low-alloy high-strength wear-resistant steel[D]. Shenyang: Northeastern University, 2017. [6] DENG X T. Research on microstructure and performance control and wear mechanism of low-alloy wear-resistant steel[D]. Shenyang: Northeastern University, 2014. (邓想涛. 低合金耐磨钢组织性能控制及磨损机理研究[D]. 沈阳: 东北大学, 2014.DENG X T. Research on microstructure and performance control and wear mechanism of low-alloy wear-resistant steel[D]. Shenyang: Northeastern University, 2014. [7] YUN M X. Study on microstructure properties of low-alloy high-strength wear-resistant steel[D]. Shenyang: Northeastern University, 2022. (云妙贤. 低合金高强度耐磨钢组织性能的研究[D]. 沈阳: 东北大学, 2022.YUN M X. Study on microstructure properties of low-alloy high-strength wear-resistant steel[D]. Shenyang: Northeastern University, 2022. [8] SU C, FENG G H, ZHI J G, et al. Effect of rare earth on low temperature impact toughness of NM400 wear-resistant steel plate[J]. Journal of Iron and Steel Research, 2021,33(12):1289-1295. (宿成, 冯光宏, 智建国, 等. 稀土对耐磨板NM400低温冲击韧性的影响[J]. 钢铁研究学报, 2021,33(12):1289-1295.SU C, FENG G H, ZHI J G, et al. Effect of rare earth on low temperature impact toughness of NM400 wear-resistant steel plate[J]. Journal of Iron and Steel Research, 2021, 33(12): 1289-1295. [9] ZHANG W P, LIU H Y, XU G X, et al. Development of high quality NM450 wear-resistant steel plate for box body of self discharge truck[J]. Special Steel, 2022,43(3):39-42. (张卫攀, 刘红艳, 徐桂喜, 等. 高品质自卸车厢体用NM450耐磨钢板的开发[J]. 特殊钢, 2022,43(3):39-42.ZHANG W P, LIU H Y, XU G X, et al. Development of high quality NM450 wear-resistant steel plate for box body of self discharge truck[J]. Special Steel, 2022, 43(3): 39-42. [10] DONG Y Q, JIN J F, GE X, et al. Analysis on the causes of welding cracks in NM450 wear-resistant steel[J]. Wide and Heavy Plate, 2021,27(3):16-20. (董延青, 靳建锋, 葛昕, 等. NM450耐磨钢焊接裂纹产生原因探析[J]. 宽厚板, 2021,27(3):16-20.DONG Y Q, JIN J F, GE X, et al. Analysis on the causes of welding cracks in NM450 wear-resistant steel[J]. Wide and Heavy Plate, 2021, 27(3): 16-20. [11] THOMAS G, CHEN Y L. Structure and mechanical properties of Fe-Cr-Mo-C alloys with and without boron[J]. Metallurgical Transactions A, 1981,12(6):933-950. doi: 10.1007/BF02643474 [12] GAO Q Y. Evolution of gradient nanostructures of martensitic high strength steel under sliding[D]. Ningbo: Ningbo University, 2020. (高清远. 马氏体高强钢滑动摩擦磨损下的梯度纳米结构演化研究[D]. 宁波: 宁波大学, 2020.GAO Q Y. Evolution of gradient nanostructures of martensitic high strength steel under sliding[D]. Ningbo: Ningbo University, 2020. [13] LIU Z Y, YANG D P, YI H L, et al. Effect of tempering temperature on microstructure and tensile properties of medium carbon martensitic steel with different degrees of self-tempering[J]. Journal of Iron and Steel Research, 2023,35(12):1505-1516. (刘志宇, 杨达朋, 易红亮, 等. 回火温度对不同自回火程度的中碳马氏体钢组织和拉伸性能的影响[J]. 钢铁研究学报, 2023,35(12):1505-1516.LIU Z Y, YANG D P, YI H L, et al. Effect of tempering temperature on microstructure and tensile properties of medium carbon martensitic steel with different degrees of self-tempering[J]. Journal of Iron and Steel Research, 2023, 35(12): 1505-1516. [14] HAN X Y. Functions of niobium, vanadium and titanium in microalloyed steels[J]. Wide and Heavy Plate, 2006(1):39-41. (韩孝永. 铌、钒、钛在微合金钢中的作用[J]. 宽厚板, 2006(1):39-41.HAN X Y. Functions of niobium, vanadium and titanium in microalloyed steels[J]. Wide and Heavy Plate, 2006(1): 39-41. [15] LU G S. Effect of quenching in critical zone on elemental segregation and low-temperature toughness of 9% Ni steel[D]. Anshan: University of Science and Technology Liaoning, 2020. (鲁广甡. 临界区淬火对9%Ni钢的元素偏析及低温韧性的影响[D]. 鞍山: 辽宁科技大学, 2020.LU G S. Effect of quenching in critical zone on elemental segregation and low-temperature toughness of 9% Ni steel[D]. Anshan: University of Science and Technology Liaoning, 2020. [16] HAN R Y. Microstructure and mechanical property control and wear mechanism study for new air-cooled martensitic wear-resistant steel [D]. Wuhan: Wuhan University of Science and Technology, 2023. (韩汝洋. 新型空冷马氏体耐磨钢的组织性能调控与磨损机理研究[D]. 武汉: 武汉科技大学, 2023.HAN R Y. Microstructure and mechanical property control and wear mechanism study for new air-cooled martensitic wear-resistant steel [D]. Wuhan: Wuhan University of Science and Technology, 2023. [17] LI G, HAO S, GAO W, et al. The effect of applied load and rotation speed on wear characteristics of Al-Cu-Li alloy[J]. Journal of Materials Engineering and Performance, 2022,31(7):1-11. [18] KINGSFORD K, HEYAN L, BIAO M, et al. Coefficient of friction and wear rate of paper-based composite friction material against 65Mn steel[J]. Proceedings of the Institution of Mechanical Engineers, 2021,235(3):544-550. [19] MA H S, LIANG G X, LÜ M, et al. Study on dry sliding friction and wear characteristics of AISI 4340 steel[J]. Tribology, 2018,38(1):59-66. (马红帅, 梁国星, 吕明, 等. AISI 4340钢干滑动摩擦磨损特性研究[J]. 摩擦学学报, 2018,38(1):59-66.MA H S, LIANG G X, LÜ M, et al. Study on dry sliding friction and wear characteristics of AISI 4340 steel[J]. Tribology, 2018, 38(1): 59-66. [20] LI Y, SCHREIBER P, SCHNEIDER J, et al. Tribological mechanisms of slurry abrasive wear[J]. Friction, 2023,11(6):1079-1093. doi: 10.1007/s40544-022-0654-1 [21] ZHU X X, YANG G W, ZHAO G, et al. Impact wear behavior of manganese martensitic wear-resistant steel in hot rolling[J]. Iron and Steel, 2022,57(7):154-161. (朱晓翔, 杨庚蔚, 赵刚, 等. 热轧中锰马氏体耐磨钢的冲击磨损行为[J]. 钢铁, 2022,57(7):154-161.ZHU X X, YANG G W, ZHAO G, et al. Impact wear behavior of manganese martensitic wear-resistant steel in hot rolling[J]. Iron and Steel, 2022, 57(7): 154-161. [22] SHI Z, BLOYCE A, SUN Y, et al. Influence of surface melting on dry rolling-sliding wear of aluminium bronze against steel[J]. Wear, 1996,198(1-2):300-306. doi: 10.1016/0043-1648(96)07205-5 [23] CHEN P, WANG P F, QIAO X X, et al. Study on sliding friction and wear properties of 45 steel/PA66 with auxiliary dry[J]. Tribology, 2019,39(1):26-34. (陈平, 王朋飞, 乔小溪. 45钢/PA66配副干滑动摩擦磨损性能研究[J]. 摩擦学学报, 2019,39(1):26-34.CHEN P, WANG P F, QIAO X X, et al. Study on sliding friction and wear properties of 45 steel/PA66 with auxiliary dry[J]. Tribology, 2019, 39(1): 26-34. [24] ZHANG Y S, HAN Z, WANG K, et al. Friction and wear behaviors of nanocrystalline surface layer of pure copper[J]. Wear, 2006,260(9):942-948. [25] MOORE M A, DOUTHWAITE R M. Plastic deformation below worn surfaces[J]. Metallurgical Transactions A, 1976,7(12):1833. doi: 10.1007/BF02659813 [26] LIU J J. Principle of material wear and its wear resistance[M]. Beijing: Tsinghua University Press, 1993. (刘家浚. 材料磨损原理及其耐磨性[M]. 北京: 清华大学出版社, 1993.LIU J J. Principle of material wear and its wear resistance[M]. Beijing: Tsinghua University Press, 1993. [27] FARHAT Z N. Contribution of crystallographic texturing to the sliding friction behaviour of fcc and hcp metals[J]. Wear, 2001,250(1):401-408. [28] TREVISIOL C, JOURANI A, BOUVIER S. Effect of microstructures with the same chemical composition and similar hardness levels on tribological behavior of a low alloy steel[J]. Tribology International, 2018,127:389-403. doi: 10.1016/j.triboint.2018.06.019 -