Effect of continuous annealing process on microstructure and properties of 780 MPa cold-rolled dual phase steel with high formability
-
摘要: 基于产线装备特点设计开发了一种低成本780 MPa级冷轧增强成形性双相钢,并开展连续退火工艺对其组织性能影响的研究。结果表明:不同退火工艺条件下试验钢显微组织主要为铁素体与弥散分布的贝氏体、马氏体和少量马奥岛;快冷结束温度的提高有助于残留奥氏体含量的提升,最高残留奥氏体含量达到3.9%;残留奥氏体呈薄膜状或块状,多分布于B/F与F/F或B/M相界面处,残留奥氏体发挥TRIP效应实现塑性提升。Abstract: A low-cost 780 MPa grade cold-rolled dual phase steel with high formability was designed and developed based on the equipment characteristics of the production line, and the effects of continuous annealing on the microstructure and properties of the cold rolled products were studied. The results show that under different annealing conditions, the microstructure of the experimental steel is mainly composed of ferrite, dispersed bainite, martensite, and a small amount of M/A islands. Increasing the end temperature of rapid cooling can increase the retained austenite content, with the highest content of retained austenite reaching 3.9%. The retained austenite is mostly distributed in the form of thin films or blocks at the interface between B/F and F/F or B/M phases, and the retained austenite exerts the TRIP effect to achieve plasticity improvement.
-
Key words:
- dual phase steel /
- annealing process /
- retained austenite /
- TRIP effect /
- mechanical property
-
表 1 试验钢化学成分
Table 1. Chemical composition of experimental steel
% C Si Mn Al Cr Ti 0.17 0.40 2.0 0.85 0.25 0.025 表 2 连续退火热模拟工艺方案
Table 2. Thermal simulation process of continuous annealing
℃ 方案 均热温度 缓冷温度 快冷温度 时效温度 1 870 780 480 300 2 870 780 510 300 3 870 780 480 350 表 3 不同方案下的力学性能
Table 3. Experimental scheme and mechanical properties
方案 Rp0.2/MPa Rm/MPa A/% Rm×A/(GPa·%) 1 459 854 13 11.10 2 429 810 20 16.20 3 403 771 18 13.88 表 4 退火工艺参数
Table 4. Annealing process parameters
℃ 均热温度 缓冷结束温度 快冷结束温度 过时效温度 865~875 775~785 505~515 290~310 表 5 工业试制产品性能
Table 5. Performance of industrial trial products
项目 Rp0.2/
MPaRm/
MPaA80/% n0 BH/
MPaRm×A/
(GPa·%)标准
要求440~550 ≥780 ≥18 ≥0.13 ≥30 工业试
制产品470~500 800~830 20.0~24.5 0.140~0.155 50~66 16.00~20.34 -
[1] KANG Y L. Light weight vehicle, advanced high strength steel and energy-saving and emission reduction[J]. Iron and Steel, 2008(6):1-7. (康永林. 汽车轻量化先进高强钢与节能减排[J]. 钢铁, 2008(6):1-7. doi: 10.3321/j.issn:0449-749X.2008.06.001KANG Y L. Light weight vehicle, advanced high strength steel and energy-saving and emission reduction[J]. Iron and Steel, 2008(6): 1-7. doi: 10.3321/j.issn:0449-749X.2008.06.001 [2] KANG Y L, ZHU G M. Development trend of China’s automobile industry and the opportunities and challenges of steels for automobiles[J]. Iron and Steel, 2014,49(12):1-7. (康永林, 朱国明. 中国汽车发展趋势及汽车用钢面临的机遇与挑战[J]. 钢铁, 2014,49(12):1-7.KANG Y L, ZHU G M. Development trend of China’s automobile industry and the opportunities and challenges of steels for automobiles[J]. Iron and Steel, 2014, 49(12): 1-7. [3] TANG D, ZHAO Z Z, MI Z L, et al. Advanced high strength strip steel for automobile[M]. Beijing: Metallurgical Industry Press, 2016. (唐荻, 赵征志, 米振莉, 等. 汽车用先进高强板带钢[M]. 北京: 冶金工业出版社, 2016.TANG D, ZHAO Z Z, MI Z L, et al. Advanced high strength strip steel for automobile[M]. Beijing: Metallurgical Industry Press, 2016. [4] YU X F, LIU P, XUE R J, et al. Analysis and improvement of stamping cracking reason for cold-rolled dual-phase steel HC420/780DP[J]. Journal of Plasticity Engineering, 2021,28(4):98-104. (于晓飞, 刘鹏, 薛仁杰, 等. 冷轧双相钢HC420/780DP冲压开裂原因分析及改进[J]. 塑性工程学报, 2021,28(4):98-104. doi: 10.3969/j.issn.1007-2012.2021.04.013YU X F, LIU P, XUE R J, et al. Analysis and improvement of stamping cracking reason for cold-rolled dual-phase steel HC420/780DP[J]. Journal of Plasticity Engineering, 2021, 28(4): 98-104. doi: 10.3969/j.issn.1007-2012.2021.04.013 [5] ZHOU L, XUE R J, CAO X E, et al. Study on microstructure and properties of high aluminum dual phase steel 980DH with high formability[J]. Iron Steel Vanadium Titanium, 2022,43(2):186-191. (周莉, 薛仁杰, 曹晓恩, 等. 高铝增强成形性双相钢980DH组织性能研究[J]. 钢铁钒钛, 2022,43(2):186-191. doi: 10.7513/j.issn.1004-7638.2022.02.028ZHOU L, XUE R J, CAO X E, et al. Study on microstructure and properties of high aluminum dual phase steel 980DH with high formability[J]. Iron Steel Vanadium Titanium, 2022, 43(2): 186-191. doi: 10.7513/j.issn.1004-7638.2022.02.028 [6] WU B Y, WANG J F, CUI Z X. Effect of a minute amount of niobium on microstructure and mechanical properties of hot galvanized DH780 Steel[J]. Shanghai Metals, 2022,44(2):47-50. (吴炳元, 王俊峰, 崔振祥. 微量Nb对热镀锌DH780钢显微组织和力学性能的影响[J]. 上海金属, 2022,44(2):47-50.WU B Y, WANG J F, CUI Z X. Effect of a minute amount of niobium on microstructure and mechanical properties of hot galvanized DH780 Steel[J]. Shanghai Metals, 2022, 44(2): 47-50. [7] CHEN L S, ZHANG J Y, TIAN Y Q, et al. Mn partitioning behavior and its effecton structure and mechanical property of C-Si-Mn dual-phase steel[J]. Journal of Iron and Steel Research, 2014,26(5):72-76. (陈连生, 张健杨, 田亚强, 等. C-Si-Mn系双相钢锰配分行为及其对组织性能的影响[J]. 钢铁研究学报, 2014,26(5):72-76.CHEN L S, ZHANG J Y, TIAN Y Q, et al. Mn partitioning behavior and its effecton structure and mechanical property of C-Si-Mn dual-phase steel[J]. Journal of Iron and Steel Research, 2014, 26(5): 72-76. [8] TANG X C, ZHANG W J, WANG X F, et al. Structure and thermoplastic properties on 1200 MPa cold – rolled dual phase steel[J]. Materials Reports, 2018,32(16):2870-2875. (唐兴昌, 张文娟, 王向飞, 等. 1200MPa级冷轧双相钢组织性能及其热塑性[J]. 材料导报, 2018,32(16):2870-2875. doi: 10.11896/j.issn.1005-023X.2018.16.031TANG X C, ZHANG W J, WANG X F, et al. Structure and thermoplastic properties on 1200 MPa cold – rolled dual phase steel[J]. Materials Reports, 2018, 32(16): 2870-2875. doi: 10.11896/j.issn.1005-023X.2018.16.031 [9] HOU X Y, LIU W C, WANG J, et al. Microstructure control and enhancement mechanism of strength-plasticity for ultra-high strength complex phase steel[J]. China Metallurgy, 2024,34(1):61-71. (侯晓英, 刘万春, 王军, 等. 超高强复相钢组织调控及强塑性提升机理[J]. 中国冶金, 2024,34(1):61-71.HOU X Y, LIU W C, WANG J, et al. Microstructure control and enhancement mechanism of strength-plasticity for ultra-high strength complex phase steel[J]. China Metallurgy, 2024, 34(1): 61-71. [10] YE J Y, ZHAO Z Z, ZHANG Y H, et al. Effects of Si and Cr on microstructure and mechanical properties of ultra high strength dual-phase steel[J]. Iron and Steel, 2015,50(3):78-83. (叶洁云, 赵征志, 张迎晖, 等. 硅和铬对超高强双相钢组织和性能的影响[J]. 钢铁, 2015,50(3):78-83.YE J Y, ZHAO Z Z, ZHANG Y H, et al. Effects of Si and Cr on microstructure and mechanical properties of ultra high strength dual-phase steel[J]. Iron and Steel, 2015, 50(3): 78-83. [11] YANG Y H, CHU X H, LU H Z, et al. Effect of continuous annealing process parameters on microstructure and properties of 1180MPa grade Nb – microalloyed dual phase steel with high formability[J]. China Metallurgy, 2024,34(1):72-80. (杨玉环, 褚晓红, 路洪洲, 等. 连续退火工艺参数对1180 MPa级含Nb增强成形性双相钢组织性能的影响[J]. 中国冶金, 2024,34(1):72-80.YANG Y H, CHU X H, LU H Z, et al. Effect of continuous annealing process parameters on microstructure and properties of 1180MPa grade Nb – microalloyed dual phase steel with high formability[J]. China Metallurgy, 2024, 34(1): 72-80. [12] ZHANG B, DU L X, DONG Y, et al. Structure-property relationship in novel low carbon hot-rolled TRIP steels via thermo-mechanical controlled processing and coiling[J]. Materials Science and Engineering A, 2020,771:138643. doi: 10.1016/j.msea.2019.138643 [13] ZHANG H G, HAN C H, LI M. Influence of bainite isothermal temperature on microstructure and mechanical properties of TRIP980 high strength steel[J]. Hot Working Technology, 2022(16):140-142. (张海刚, 韩翠红, 李民. 贝氏体等温温度对TRIP980高强钢微观组织及力学性能的影响[J]. 热加工工艺, 2022(16):140-142.ZHANG H G, HAN C H, LI M. Influence of bainite isothermal temperature on microstructure and mechanical properties of TRIP980 high strength steel[J]. Hot Working Technology, 2022(16): 140-142. [14] HOU X Y, BI Y J, HAO L. Analysis on microstructure and strengthening mechanisms of hot-rolled TRIP980 steel[J]. Iron and Steel, 2019,54(4):63-67. (侯晓英, 毕永杰, 郝亮. 热轧TRIP980钢微观组织及强化机制分析[J]. 钢铁, 2019,54(4):63-67.HOU X Y, BI Y J, HAO L. Analysis on microstructure and strengthening mechanisms of hot-rolled TRIP980 steel[J]. Iron and Steel, 2019, 54(4): 63-67. [15] ZHANG S. Microstructure and mechanical properties study on ferrite/bainite dual phase steel[D]. Shenyang: Northeastern University, 2019. (张松. 铁素体贝氏体双相钢组织性能研究[D]. 沈阳:东北大学, 2019.ZHANG S. Microstructure and mechanical properties study on ferrite/bainite dual phase steel[D]. Shenyang: Northeastern University, 2019. [16] CHENG X, GUI X L, GAO G H. Retained austenite in advanced high strength steels: a review[J]. Materials Reports, 2023,37(7):120-131. (程瑄, 桂晓露, 高古辉. 先进高强钢中的残留奥氏体: 综述[J]. 材料导报, 2023,37(7):120-131.CHENG X, GUI X L, GAO G H. Retained austenite in advanced high strength steels: a review[J]. Materials Reports, 2023, 37(7): 120-131. [17] ZHANG W, LI C G, LIN X M, et al. Analysis of energy absorption characteristics of dual phase steel with high formability based on drop test[C]// Proceedings of the 12th China Iron and Steel Annual Conference – 5: Deep Processing of Metal Materials. Chinese Society of Metals, 2019: 7. (张伟, 李春光, 林兴明, 等. 基于压溃试验增强成形性双相钢吸能特性分析[C]//第十二届中国钢铁年会论文集—5. 金属材料深加工. 中国金属学会, 2019: 7.ZHANG W, LI C G, LIN X M, et al. Analysis of energy absorption characteristics of dual phase steel with high formability based on drop test[C]// Proceedings of the 12th China Iron and Steel Annual Conference – 5: Deep Processing of Metal Materials. Chinese Society of Metals, 2019: 7. [18] YU X F, CAO X E, XUE R J, et al. Microstructure and properties of 1.0 GPa grade coldrolled dual phase steel with high formability[J]. Transactions of Materials and Heat Treatment, 2022,43(12):116-124. (于晓飞, 曹晓恩, 薛仁杰, 等. 1.0 GPa级冷轧增强成形性双相钢的组织性能[J]. 材料热处理学报, 2022,43(12):116-124.YU X F, CAO X E, XUE R J, et al. Microstructure and properties of 1.0 GPa grade coldrolled dual phase steel with high formability[J]. Transactions of Materials and Heat Treatment, 2022, 43(12): 116-124. [19] LIANG J T, ZHAO Z Z, LIU K, et al. Microstructure and properties of 1300 MPa grade Nb microalloying DH steel[J]. Chinese Journal of Engineering, 2021,43(3):392-399. (梁江涛, 赵征志, 刘锟, 等. 1300 MPa级Nb微合金化DH钢的组织性能[J]. 工程科学学报, 2021,43(3):392-399.LIANG J T, ZHAO Z Z, LIU K, et al. Microstructure and properties of 1300 MPa grade Nb microalloying DH steel[J]. Chinese Journal of Engineering, 2021, 43(3): 392-399. [20] LI C Y, ZHANG S S, KANG R M, et al. Effect of quenching-partitioning process on decomposition of retained austenite in steel during secondary quenching[J]. Heat Treatment of Metals, 2020,45(10):11-16. (历长云, 张珊珊, 康人木, 等. 淬火-配分处理对二次淬火时钢中残留奥氏体分解转变的影响[J]. 金属热处理, 2020,45(10):11-16.LI C Y, ZHANG S S, KANG R M, et al. Effect of quenching-partitioning process on decomposition of retained austenite in steel during secondary quenching[J]. Heat Treatment of Metals, 2020, 45(10): 11-16. -