中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于钒钛高炉的高效喷煤操作工艺技术研究

何海熙 徐灿 颜新 邹忠平

何海熙, 徐灿, 颜新, 邹忠平. 基于钒钛高炉的高效喷煤操作工艺技术研究[J]. 钢铁钒钛, 2025, 46(1): 198-204. doi: 10.7513/j.issn.1004-7638.2025.01.028
引用本文: 何海熙, 徐灿, 颜新, 邹忠平. 基于钒钛高炉的高效喷煤操作工艺技术研究[J]. 钢铁钒钛, 2025, 46(1): 198-204. doi: 10.7513/j.issn.1004-7638.2025.01.028
HE Haixi, XU Can, YAN Xin, ZOU Zhongping. Study on efficient pulverized coal injection operation technology in vanadium-titanium blast furnaces[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 198-204. doi: 10.7513/j.issn.1004-7638.2025.01.028
Citation: HE Haixi, XU Can, YAN Xin, ZOU Zhongping. Study on efficient pulverized coal injection operation technology in vanadium-titanium blast furnaces[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 198-204. doi: 10.7513/j.issn.1004-7638.2025.01.028

基于钒钛高炉的高效喷煤操作工艺技术研究

doi: 10.7513/j.issn.1004-7638.2025.01.028
详细信息
    作者简介:

    何海熙,1984年出生,男,重庆人,硕士,高级工程师,主要从事钒钛高炉喷煤、钒钛高炉冶炼智能化技术相关工作,E-mail:Haixi.he@cisdi.com.cn

  • 中图分类号: TF541

Study on efficient pulverized coal injection operation technology in vanadium-titanium blast furnaces

  • 摘要: 从提高钒钛高炉喷煤量及其稳定均匀性,进而降低喷吹能耗的目的出发,构建了规模和能力相当于1000 m3高炉喷煤系统的中试试验装置。在此基础上开展了不同喷煤工艺及控制参数(二次补气比例、加气量与置换气量比值、底部流化速度、出料方式)对提高喷煤量、固气比和稳定性影响的研究。试验结果表明,在管道喷吹气体总流量不变的情况下,随着二次补气比例降低,喷煤量和固气比大幅增加,稳定性有所降低,当二次补气比例控制到45%水平左右时,喷煤量和固气比达到最大值,节能空间最大。随着加压和置换气量的比值逐渐提高,喷煤量先增加后降低,当加压和置换气量比值控制在1.5~2时,喷煤量达到最大值。同样,底部流化速度应控制在0.02~0.025 m/s时,喷煤量、固气比及稳定性最优。对比上、下出料两种方式,上出料方式由于气体流动方向与出料方向一致,其稳定性更好。
  • 图  1  中试试验装置

    Figure  1.  Pilot experimental setup

    图  2  喷吹料罐锥部示意

    (a)上部出料方式;(b)下部出料方式

    Figure  2.  Schematic diagrams of the cone part of material tanks

    图  3  不同二次补气比例(Q6/Q7)对(a)喷煤量、标准差(稳定性)、(b)固气比以及(c)喉口流速的影响,(d)喉口流速对喷煤量的影响

    Figure  3.  Effects of different secondary gas injection ratios (Q6/Q7) on (a) Coal injection rate and stability, (b) Solid-gas ratio, and (c) Throat flow rate. (d) Effects of throat flow rate on coal injection rate

    图  4  不同加压与置换气量比值对喷煤量的影响

    二次补气比例为:(a)40%水平;(b)50%水平;(c)60%水平;(d)70%水平

    Figure  4.  Effects of different ratios of pressurization and displacement gas on coal injection rate

    图  5  二次补气比例占40%时,底部流化速度与(a)喷煤量、标准差(稳定性)及(b)固气比的关系

    Figure  5.  Relationship between bottom fluidization velocity and (a) Coal injection rate, stability, and (b) Solid-gas ratio, while secondary gas injection ratios (Q6/Q7) 40%

    图  6  二次补气比例占50%时,底部流化速度与(a)喷煤量、标准差(稳定性)及(b)固气比的关系

    Figure  6.  Relationship between bottom fluidization velocity and (a) Coal injection rate, stability, and (b) Solid-gas ratio, while secondary gas injection ratios (Q6/Q7) 50%

    图  7  不同出料方式对(a)喷煤量、(b)固气比及(c)标准差(稳定性)的影响

    Figure  7.  Effects of different discharge modes on (a) coal injection rate, (b) solid gas ratio, and (c) stability

    表  1  中试试验装置参数

    Table  1.   Parameters of pilot experimental setup

    罐压P0/MPa 背压Pe/kPa 流速V/(m·s−1) 固气比μ/(kg·kg−1 总气量Q7/(Nmh−1 流化板直径D/mm 喉口直径d/mm 管道规格/mm 管道长/m
    0.3~0.4 80~90 6~8 30~50 220~240 600 111 Ø76 × 4 200
    下载: 导出CSV

    表  2  煤粉的物性参数

    Table  2.   Physical parameters of pulverized coal

    Vad/% 灰分/% 着火点/ ℃ 粒度<74 μm
    占比/%
    水分/% 松装密度
    /(kg·m−3
    振实密度
    /(kg·m−3
    真密度
    /(kg·m−3
    崩溃角/(°)
    7.76 29.4 395 73.6 1.2 684 818 1310 29
    下载: 导出CSV

    表  3  上部出料方式下的试验方案设计

    Table  3.   Experimental scheme design under top discharge mode

    项目 Q6/Q7 Q7
    /(Nm3·h−1
    Q6
    /(Nm3·h−1
    Q5
    /(Nm3·h−1
    Q4
    /(Nm3·h−1
    Q3
    /(Nm3·h−1
    Q1
    /(Nm3·h−1
    喷煤量
    G/(t·h−1
    固气比
    μ /(kg·kg−1
    喉口流速
    Vh/(m· s−1
    表观流化速度
    V0/(m·s−1
    方案1 70% 计算值 165 计算值 计算值 90~13 13~90 检测值 计算值 计算值 计算值
    方案2 60% 计算值 129 计算值 计算值 126~15 16~125 检测值 计算值 计算值 计算值
    方案3 50% 计算值 115 计算值 计算值 138~27 17~127 检测值 计算值 计算值 计算值
    方案4 40% 计算值 91 计算值 计算值 144~31 34~146 检测值 计算值 计算值 计算值
    下载: 导出CSV

    表  4  不同出料方式对比试验方案设计

    Table  4.   Comparison of experimental scheme for different discharge modes

    项目 罐压P0/MPa Q7/(Nm3·h−1 Q6/(Nm3·h−1 Q5/(Nm3·h−1 Q3/(Nm3·h−1 Q1/(Nm3·h−1 Q4/(Nm3·h−1 喷煤量G/(t·h−1
    上出料 0.33 223 110 112 79 81 计算值 检测值
    下出料 0.33 226 110 116 81 80 计算值 检测值
    下载: 导出CSV
  • [1] ZHENG K, HU P, HUANG Y, et al. Soft melt performance of vanadium titanium charge under high oxygen-enriched injection conditions[J]. Sintering and Pelletizing, 2024. (Online) (郑魁, 胡鹏, 黄云, 等. 高富氧喷吹条件下钒钛炉料的软熔性能[J]. 烧结球团, 2024. (Online)

    ZHENG K, HU P, HUANG Y, et al. Soft melt performance of vanadium titanium charge under high oxygen-enriched injection conditions[J]. Sintering and Pelletizing, 2024. (Online)
    [2] CAO Y C. Experimental study on iron concentrate separation from a low-grade vanadium-titanium magnetite in Panxi area[J]. Iron Steel Vanadium Titanium, 2023,44(3):114-117. (曹玉川. 攀西某低品位钒钛磁铁矿选铁工艺研究[J]. 钢铁钒钛, 2023,44(3):114-117.

    CAO Y C. Experimental study on iron concentrate separation from a low-grade vanadium-titanium magnetite in Panxi area[J]. Iron Steel Vanadium Titanium, 2023, 44(3): 114-117.
    [3] DONG H G. Study on production of high-quality synthetic rutile fromelectric furnace titanium slag with high content of calciumand magnesium[D]. Changsha: Central South University, 2010. (董海刚. 高钙镁电炉钛渣制备优质人造金红石的研究[D]. 长沙: 中南大学, 2010.

    DONG H G. Study on production of high-quality synthetic rutile fromelectric furnace titanium slag with high content of calciumand magnesium[D]. Changsha: Central South University, 2010.
    [4] PANG Z D. Fundamental theory research on blast furnace smelting with ultra-high ratio vanadium titanomagnetite[D]. Chongqing: Chongqing University, 2010. (庞正德. 超高配比钒钛矿高炉冶炼基础理论研究[D]. 重庆: 重庆大学, 2021.

    PANG Z D. Fundamental theory research on blast furnace smelting with ultra-high ratio vanadium titanomagnetite[D]. Chongqing: Chongqing University, 2010.
    [5] LUO L G, PANG J M, LI X, et al. Separation of iron and titanium by reduction grinding separation process of vanadium titanium magnetite[J]. Iron and Steel, 2024,59(8):13-18, 49. (罗林根, 庞建明, 李新, 等. 钒钛磁铁矿还原-磨选工艺分离铁钛试验[J]. 钢铁, 2024,59(8):13-18, 49.

    LUO L G, PANG J M, LI X, et al. Separation of iron and titanium by reduction grinding separation process of vanadium titanium magnetite[J]. Iron and Steel, 2024, 59(8): 13-18, 49.
    [6] QIE Y N, JIN Y T, KANG Y, et al. Influence of hydrogen rich on softening and melting property of blast furnace burden with vanadium and titanium[J]. Iron and Steel, 2023,58(5):31-38. (郄亚娜, 靳亚涛, 康媛, 等. 高炉富氢对钒钛矿软熔滴落性能的影响[J]. 钢铁, 2023,58(5):31-38.

    QIE Y N, JIN Y T, KANG Y, et al. Influence of hydrogen rich on softening and melting property of blast furnace burden with vanadium and titanium[J]. Iron and Steel, 2023, 58(5): 31-38.
    [7] CHEN Y W. Technical progress of blast furnace coal injection in Huaigang[J]. Shanxi Metallurgy, 2021,44(6):209-212. (陈永卫. 淮钢高炉喷煤技术进步[J]. 山西冶金, 2021,44(6):209-212.

    CHEN Y W. Technical progress of blast furnace coal injection in Huaigang[J]. Shanxi Metallurgy, 2021, 44(6): 209-212.
    [8] ZHANG F C. Development direction of green blast furnace ironmaking technology[J]. Metallurgy and Materials, 2021,41(4):113-114. (张付昌. 低碳绿色高炉炼铁技术发展方向[J]. 冶金与材料, 2021,41(4):113-114.

    ZHANG F C. Development direction of green blast furnace ironmaking technology[J]. Metallurgy and Materials, 2021, 41(4): 113-114.
    [9] ZHOU X, BAI Y Q. Research on BF carbon reduction through fuel substitutes[J]. Ironmaking, 2024,43(1):12-15. (周翔, 白永强. 试论高炉燃料替代的降碳路径[J]. 炼铁, 2024,43(1):12-15.

    ZHOU X, BAI Y Q. Research on BF carbon reduction through fuel substitutes[J]. Ironmaking, 2024, 43(1): 12-15.
    [10] HUANG Q Z, ZHU H L, ZHANG H F. Practice of large coal injection operation in No. 1 blast furnace of Liu Steel[J]. Ironmaking, 2010,29(3):47-49. (黄庆周, 祝和利, 张海峰. 柳钢1号高炉大喷煤操作实践[J]. 炼铁, 2010,29(3):47-49.

    HUANG Q Z, ZHU H L, ZHANG H F. Practice of large coal injection operation in No. 1 blast furnace of Liu Steel[J]. Ironmaking, 2010, 29(3): 47-49.
    [11] YU R S. Introduction to the process of blast furnace coal powder injection system[J]. Modern Economic Information, 2010,9:142-143. (虞日升. 高炉煤粉喷吹系统工艺简介[J]. 现代经济信息, 2010,9:142-143.

    YU R S. Introduction to the process of blast furnace coal powder injection system[J]. Modern Economic Information, 2010, 9: 142-143.
    [12] LI H Y, HU X G. Production practice of improving oxygen enrichment rate in vanadium titanium ore blast furnace smelting[J]. Shanxi Metallurgy, 2024,47(5):123-125. (李红艳, 胡心光. 富氧率提升下的钒钛矿高炉冶炼[J]. 山西冶金, 2024,47(5):123-125.

    LI H Y, HU X G. Production practice of improving oxygen enrichment rate in vanadium titanium ore blast furnace smelting[J]. Shanxi Metallurgy, 2024, 47(5): 123-125.
    [13] YIN X C. Study on cooperative optimization of large coal injection and oxygen enrichment rate in blast furnace ironmaking process[J]. Gansu Metallurgy, 2024,46(2):32-34. (尹晓成. 高炉炼铁工艺中大喷煤量与富氧率的协同优化研究[J]. 甘肃冶金, 2024,46(2):32-34.

    YIN X C. Study on cooperative optimization of large coal injection and oxygen enrichment rate in blast furnace ironmaking process[J]. Gansu Metallurgy, 2024, 46(2): 32-34.
    [14] LIU L L, KUANG S B, GUO B Y, et al. Combustion characteristics of charcoal, semicoke, and pulverized coal in blast furnace and their impacts on reactor performance[J]. Powder Technology, 2024,433:119243.
    [15] LIU H L. The effect of coal injecton on the over-reduction of TiO2 in the blast furnace[J]. Sichuan Metallurgy, 2004(5):17-19. (刘虎林. 高炉喷煤对渣中TiO2过还原的影响探讨[J]. 四川冶金, 2004(5):17-19. doi: 10.3969/j.issn.1001-5108.2004.05.005

    LIU H L. The effect of coal injecton on the over-reduction of TiO2 in the blast furnace[J]. Sichuan Metallurgy, 2004(5): 17-19. doi: 10.3969/j.issn.1001-5108.2004.05.005
    [16] DIAO R S, HU B S. Influence of unburned PCI on the blast furnace slag viscosity in Panzhihua Steel[J]. Iron and Steel, 2004(9):14-16. (刁日升, 胡宾生. 攀钢高炉未燃煤粉对炉渣流动性的影响[J]. 钢铁, 2004(9):14-16. doi: 10.3321/j.issn:0449-749X.2004.09.003

    DIAO R S, HU B S. Influence of unburned PCI on the blast furnace slag viscosity in Panzhihua Steel[J]. Iron and Steel, 2004(9): 14-16. doi: 10.3321/j.issn:0449-749X.2004.09.003
    [17] DAI W. Practice to increase coal injection ratio in smelting vanadium titanium ore in 2500 m3 blast furnace[J]. Hebei Metallurgy, 2015(9):40-42. (代维. 提高2500 m3高炉冶炼钒钛矿喷煤比的实践[J]. 河北冶金, 2015(9):40-42.

    DAI W. Practice to increase coal injection ratio in smelting vanadium titanium ore in 2500 m3 blast furnace[J]. Hebei Metallurgy, 2015(9): 40-42.
    [18] DU S H, HUANG B, ZENG H F. Practice of vanadium titano-magnetite high coal injection ratio blast furnace process under low grade condition[J]. Iron Steel Vanadium Titanium, 2014,35(5):83-87. (杜斯宏, 黄彬, 曾华锋. 低品位条件下钒钛磁铁矿高喷煤比冶炼实践[J]. 钢铁钒钛, 2014,35(5):83-87.

    DU S H, HUANG B, ZENG H F. Practice of vanadium titano-magnetite high coal injection ratio blast furnace process under low grade condition[J]. Iron Steel Vanadium Titanium, 2014, 35(5): 83-87.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  21
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-10
  • 刊出日期:  2025-02-27

目录

    /

    返回文章
    返回