Study on efficient pulverized coal injection operation technology in vanadium-titanium blast furnaces
-
摘要: 从提高钒钛高炉喷煤量及其稳定均匀性,进而降低喷吹能耗的目的出发,构建了规模和能力相当于
1000 m3高炉喷煤系统的中试试验装置。在此基础上开展了不同喷煤工艺及控制参数(二次补气比例、加气量与置换气量比值、底部流化速度、出料方式)对提高喷煤量、固气比和稳定性影响的研究。试验结果表明,在管道喷吹气体总流量不变的情况下,随着二次补气比例降低,喷煤量和固气比大幅增加,稳定性有所降低,当二次补气比例控制到45%水平左右时,喷煤量和固气比达到最大值,节能空间最大。随着加压和置换气量的比值逐渐提高,喷煤量先增加后降低,当加压和置换气量比值控制在1.5~2时,喷煤量达到最大值。同样,底部流化速度应控制在0.02~0.025 m/s时,喷煤量、固气比及稳定性最优。对比上、下出料两种方式,上出料方式由于气体流动方向与出料方向一致,其稳定性更好。Abstract: In order to achieve the goal of enhancing the pulverized coal injection (PCI) rate, along with its stability and uniformity in vanadium-titanium blast furnaces, ultimately reducing energy consumption, a pilot-scale experimental device was developed, equivalent in scale and capacity to a1000 m3 blast furnace PCI system. Using this setup, the effects of various PCI processes and control parameters - including the secondary air injection ratio, the ratio of pressurized to replacement air, fluidization velocity, and discharge modes-on improving the injection rate, solid-gas ratio, and overall stability had been investigated. The experimental results revealed that, with a constant total gas flow in the injection pipeline, a decrease in the secondary air injection ratio led to a significant increase in both the injection rate and solid-gas ratio, as well as reduction in stability. When the secondary air injection ratio was maintained around 45%, the PCI rate and solid-gas ratio peaked, achieving the highest energy-saving potential. Furthermore, as the ratio of pressurized to replacement air increased, the PCI rate initially rose and then declined, reaching its maximum when the ratio was controlled between at 1.5~2. Similarly, the optimal bottom fluidization velocity was identified as 0.02~0.025 m/s, maximizing the injection rate, solid-gas ratio, and stability. Comparative analysis of two discharge modes (top discharge and bottom discharge) indicated that the top discharge mode offered superior stability due to the agreement of the gas flow direction with the discharge direction. -
表 1 中试试验装置参数
Table 1. Parameters of pilot experimental setup
罐压P0/MPa 背压Pe/kPa 流速V/(m·s−1) 固气比μ/(kg·kg−1) 总气量Q7/(Nm3·h−1) 流化板直径D/mm 喉口直径d/mm 管道规格/mm 管道长/m 0.3~0.4 80~90 6~8 30~50 220~240 600 111 Ø76 × 4 200 表 2 煤粉的物性参数
Table 2. Physical parameters of pulverized coal
Vad/% 灰分/% 着火点/ ℃ 粒度<74 μm
占比/%水分/% 松装密度
/(kg·m−3)振实密度
/(kg·m−3)真密度
/(kg·m−3)崩溃角/(°) 7.76 29.4 395 73.6 1.2 684 818 1310 29 表 3 上部出料方式下的试验方案设计
Table 3. Experimental scheme design under top discharge mode
项目 Q6/Q7 Q7
/(Nm3·h−1)Q6
/(Nm3·h−1)Q5
/(Nm3·h−1)Q4
/(Nm3·h−1)Q3
/(Nm3·h−1)Q1
/(Nm3·h−1)喷煤量
G/(t·h−1)固气比
μ /(kg·kg−1)喉口流速
Vh/(m· s−1)表观流化速度
V0/(m·s−1)方案1 70% 计算值 165 计算值 计算值 90~13 13~90 检测值 计算值 计算值 计算值 方案2 60% 计算值 129 计算值 计算值 126~15 16~125 检测值 计算值 计算值 计算值 方案3 50% 计算值 115 计算值 计算值 138~27 17~127 检测值 计算值 计算值 计算值 方案4 40% 计算值 91 计算值 计算值 144~31 34~146 检测值 计算值 计算值 计算值 表 4 不同出料方式对比试验方案设计
Table 4. Comparison of experimental scheme for different discharge modes
项目 罐压P0/MPa Q7/(Nm3·h−1) Q6/(Nm3·h−1) Q5/(Nm3·h−1) Q3/(Nm3·h−1) Q1/(Nm3·h−1) Q4/(Nm3·h−1) 喷煤量G/(t·h−1) 上出料 0.33 223 110 112 79 81 计算值 检测值 下出料 0.33 226 110 116 81 80 计算值 检测值 -
[1] ZHENG K, HU P, HUANG Y, et al. Soft melt performance of vanadium titanium charge under high oxygen-enriched injection conditions[J]. Sintering and Pelletizing, 2024. (Online) (郑魁, 胡鹏, 黄云, 等. 高富氧喷吹条件下钒钛炉料的软熔性能[J]. 烧结球团, 2024. (Online)ZHENG K, HU P, HUANG Y, et al. Soft melt performance of vanadium titanium charge under high oxygen-enriched injection conditions[J]. Sintering and Pelletizing, 2024. (Online) [2] CAO Y C. Experimental study on iron concentrate separation from a low-grade vanadium-titanium magnetite in Panxi area[J]. Iron Steel Vanadium Titanium, 2023,44(3):114-117. (曹玉川. 攀西某低品位钒钛磁铁矿选铁工艺研究[J]. 钢铁钒钛, 2023,44(3):114-117.CAO Y C. Experimental study on iron concentrate separation from a low-grade vanadium-titanium magnetite in Panxi area[J]. Iron Steel Vanadium Titanium, 2023, 44(3): 114-117. [3] DONG H G. Study on production of high-quality synthetic rutile fromelectric furnace titanium slag with high content of calciumand magnesium[D]. Changsha: Central South University, 2010. (董海刚. 高钙镁电炉钛渣制备优质人造金红石的研究[D]. 长沙: 中南大学, 2010.DONG H G. Study on production of high-quality synthetic rutile fromelectric furnace titanium slag with high content of calciumand magnesium[D]. Changsha: Central South University, 2010. [4] PANG Z D. Fundamental theory research on blast furnace smelting with ultra-high ratio vanadium titanomagnetite[D]. Chongqing: Chongqing University, 2010. (庞正德. 超高配比钒钛矿高炉冶炼基础理论研究[D]. 重庆: 重庆大学, 2021.PANG Z D. Fundamental theory research on blast furnace smelting with ultra-high ratio vanadium titanomagnetite[D]. Chongqing: Chongqing University, 2010. [5] LUO L G, PANG J M, LI X, et al. Separation of iron and titanium by reduction grinding separation process of vanadium titanium magnetite[J]. Iron and Steel, 2024,59(8):13-18, 49. (罗林根, 庞建明, 李新, 等. 钒钛磁铁矿还原-磨选工艺分离铁钛试验[J]. 钢铁, 2024,59(8):13-18, 49.LUO L G, PANG J M, LI X, et al. Separation of iron and titanium by reduction grinding separation process of vanadium titanium magnetite[J]. Iron and Steel, 2024, 59(8): 13-18, 49. [6] QIE Y N, JIN Y T, KANG Y, et al. Influence of hydrogen rich on softening and melting property of blast furnace burden with vanadium and titanium[J]. Iron and Steel, 2023,58(5):31-38. (郄亚娜, 靳亚涛, 康媛, 等. 高炉富氢对钒钛矿软熔滴落性能的影响[J]. 钢铁, 2023,58(5):31-38.QIE Y N, JIN Y T, KANG Y, et al. Influence of hydrogen rich on softening and melting property of blast furnace burden with vanadium and titanium[J]. Iron and Steel, 2023, 58(5): 31-38. [7] CHEN Y W. Technical progress of blast furnace coal injection in Huaigang[J]. Shanxi Metallurgy, 2021,44(6):209-212. (陈永卫. 淮钢高炉喷煤技术进步[J]. 山西冶金, 2021,44(6):209-212.CHEN Y W. Technical progress of blast furnace coal injection in Huaigang[J]. Shanxi Metallurgy, 2021, 44(6): 209-212. [8] ZHANG F C. Development direction of green blast furnace ironmaking technology[J]. Metallurgy and Materials, 2021,41(4):113-114. (张付昌. 低碳绿色高炉炼铁技术发展方向[J]. 冶金与材料, 2021,41(4):113-114.ZHANG F C. Development direction of green blast furnace ironmaking technology[J]. Metallurgy and Materials, 2021, 41(4): 113-114. [9] ZHOU X, BAI Y Q. Research on BF carbon reduction through fuel substitutes[J]. Ironmaking, 2024,43(1):12-15. (周翔, 白永强. 试论高炉燃料替代的降碳路径[J]. 炼铁, 2024,43(1):12-15.ZHOU X, BAI Y Q. Research on BF carbon reduction through fuel substitutes[J]. Ironmaking, 2024, 43(1): 12-15. [10] HUANG Q Z, ZHU H L, ZHANG H F. Practice of large coal injection operation in No. 1 blast furnace of Liu Steel[J]. Ironmaking, 2010,29(3):47-49. (黄庆周, 祝和利, 张海峰. 柳钢1号高炉大喷煤操作实践[J]. 炼铁, 2010,29(3):47-49.HUANG Q Z, ZHU H L, ZHANG H F. Practice of large coal injection operation in No. 1 blast furnace of Liu Steel[J]. Ironmaking, 2010, 29(3): 47-49. [11] YU R S. Introduction to the process of blast furnace coal powder injection system[J]. Modern Economic Information, 2010,9:142-143. (虞日升. 高炉煤粉喷吹系统工艺简介[J]. 现代经济信息, 2010,9:142-143.YU R S. Introduction to the process of blast furnace coal powder injection system[J]. Modern Economic Information, 2010, 9: 142-143. [12] LI H Y, HU X G. Production practice of improving oxygen enrichment rate in vanadium titanium ore blast furnace smelting[J]. Shanxi Metallurgy, 2024,47(5):123-125. (李红艳, 胡心光. 富氧率提升下的钒钛矿高炉冶炼[J]. 山西冶金, 2024,47(5):123-125.LI H Y, HU X G. Production practice of improving oxygen enrichment rate in vanadium titanium ore blast furnace smelting[J]. Shanxi Metallurgy, 2024, 47(5): 123-125. [13] YIN X C. Study on cooperative optimization of large coal injection and oxygen enrichment rate in blast furnace ironmaking process[J]. Gansu Metallurgy, 2024,46(2):32-34. (尹晓成. 高炉炼铁工艺中大喷煤量与富氧率的协同优化研究[J]. 甘肃冶金, 2024,46(2):32-34.YIN X C. Study on cooperative optimization of large coal injection and oxygen enrichment rate in blast furnace ironmaking process[J]. Gansu Metallurgy, 2024, 46(2): 32-34. [14] LIU L L, KUANG S B, GUO B Y, et al. Combustion characteristics of charcoal, semicoke, and pulverized coal in blast furnace and their impacts on reactor performance[J]. Powder Technology, 2024,433:119243. [15] LIU H L. The effect of coal injecton on the over-reduction of TiO2 in the blast furnace[J]. Sichuan Metallurgy, 2004(5):17-19. (刘虎林. 高炉喷煤对渣中TiO2过还原的影响探讨[J]. 四川冶金, 2004(5):17-19. doi: 10.3969/j.issn.1001-5108.2004.05.005LIU H L. The effect of coal injecton on the over-reduction of TiO2 in the blast furnace[J]. Sichuan Metallurgy, 2004(5): 17-19. doi: 10.3969/j.issn.1001-5108.2004.05.005 [16] DIAO R S, HU B S. Influence of unburned PCI on the blast furnace slag viscosity in Panzhihua Steel[J]. Iron and Steel, 2004(9):14-16. (刁日升, 胡宾生. 攀钢高炉未燃煤粉对炉渣流动性的影响[J]. 钢铁, 2004(9):14-16. doi: 10.3321/j.issn:0449-749X.2004.09.003DIAO R S, HU B S. Influence of unburned PCI on the blast furnace slag viscosity in Panzhihua Steel[J]. Iron and Steel, 2004(9): 14-16. doi: 10.3321/j.issn:0449-749X.2004.09.003 [17] DAI W. Practice to increase coal injection ratio in smelting vanadium titanium ore in 2500 m3 blast furnace[J]. Hebei Metallurgy, 2015(9):40-42. (代维. 提高2500 m3高炉冶炼钒钛矿喷煤比的实践[J]. 河北冶金, 2015(9):40-42.DAI W. Practice to increase coal injection ratio in smelting vanadium titanium ore in 2500 m3 blast furnace[J]. Hebei Metallurgy, 2015(9): 40-42. [18] DU S H, HUANG B, ZENG H F. Practice of vanadium titano-magnetite high coal injection ratio blast furnace process under low grade condition[J]. Iron Steel Vanadium Titanium, 2014,35(5):83-87. (杜斯宏, 黄彬, 曾华锋. 低品位条件下钒钛磁铁矿高喷煤比冶炼实践[J]. 钢铁钒钛, 2014,35(5):83-87.DU S H, HUANG B, ZENG H F. Practice of vanadium titano-magnetite high coal injection ratio blast furnace process under low grade condition[J]. Iron Steel Vanadium Titanium, 2014, 35(5): 83-87. -