Volume 42 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Xin Yanan, Peng Sui, Liu Bo. Simulation and experimental study on ultrasonic spray pyrolysis of ultrafine vanadium dioxide powder[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 16-23. doi: 10.7513/j.issn.1004-7638.2021.01.003
Citation: Xin Yanan, Peng Sui, Liu Bo. Simulation and experimental study on ultrasonic spray pyrolysis of ultrafine vanadium dioxide powder[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 16-23. doi: 10.7513/j.issn.1004-7638.2021.01.003

Simulation and experimental study on ultrasonic spray pyrolysis of ultrafine vanadium dioxide powder

doi: 10.7513/j.issn.1004-7638.2021.01.003
  • Received Date: 2020-09-12
  • Publish Date: 2021-02-10
  • For the spray pyrolysis process, the device was optimized by computational fluid dynamics (CFD) method. Through comparison and analysis, the heat preservation optimization was adopted for the inlet and outlet sections of the tubular furnace to improve the uneven temperature and velocity field distributions. An ultrasonic spray pyrolysis device was designed and set up, and the influences of precursor solution, precursor concentration and pyrolysis temperature on the particle size and morphology of the products were investigated through experiments. The results show that the main products of the ultrasonic pyrolysis of vanadyl oxalate solution are V2O3, while the pyrolysis products of vanadyl sulfate and vanadyl dichloride are blue black VO2 particles. With increase of the concentration of vanadyl sulfate precursor, the amount of large particles increases significantly, and the particle size is more than 100 nm. The VO2 particles obtained via pyrolysis of vanadyl dichloride are the secondary and primary particles. With increase of the pyrolysis temperature and precursor concentration, the dispersion of the particles increases obviously, and the number of small particles increases, and the particle size is about 100 nm.
  • loading
  • [1]
    Milosevic O B, Mancic L, Rabanal M E, et al. Aerosol route in processing of nanostructured functional materials[J]. KONA Powder and Particle Journal, 2009,27:84−106. doi: 10.14356/kona.2009010
    [2]
    Patil P S. Versatility of chemical spray pyrolysis technique[J]. Mater. Chem. Phys., 1999,59:185−198. doi: 10.1016/S0254-0584(99)00049-8
    [3]
    Kodas T T, Hampden-Smith M J. Aerosol processing of materials[M]. New York: Wiley-VCH, 1998.
    [4]
    Arpagaus C. A novel laboratory-scale spray dryer to produce nano particles[J]. Drying Technol, 2012,30:1113−1121. doi: 10.1080/07373937.2012.686949
    [5]
    Arun M. Principles, classification and selection of dryers[C]//In Handbook of Industrial Drying. Third Edition.CRC Press, 2006.
    [6]
    Dosev D, Guo B, Kennedy I M. Photoluminescence of as an indication of crystal structure and particle size in nanoparticles synthesized by flame spray pyrolysis[J]. J. Aerosol Sci., 2006,37:402−412. doi: 10.1016/j.jaerosci.2005.08.009
    [7]
    Zhang Yue, Yan Jiazhen, Huang Wanxia, et al. Study on thermochromic properties of the Mo –doped VO2 thin films on muscovite subtrate[J]. Iron Steel Vanadium Titanium, 2008,29(2):5−8. (张月, 颜家振, 黄婉霞, 等. 云母衬底掺钼二氧化钒薄膜热致相变性能研究[J]. 钢铁钒钛, 2008,29(2):5−8. doi: 10.7513/j.issn.1004-7638.2008.02.002
    [8]
    Pu Hong, Tian Congxue. Preparation of porous TiO2 photocatalyst by hydrothermal crystallizing process[J]. Iron Steel Vanadium Titanium, 2014,35(2):31−34, 55. (蒲洪, 田从学. 水热晶化制备多孔二氧化钛[J]. 钢铁钒钛, 2014,35(2):31−34, 55. doi: 10.7513/j.issn.1004-7638.2014.02.006
    [9]
    Pu Hong. Hydrothermal synthesis of titanium dioxide and its photocatalytic properties evaluation[J]. Iron Steel Vanadium Titanium, 2017,38(3):21−24. (蒲洪. 二氧化钛的水热制备及其催化性能评价[J]. 钢铁钒钛, 2017,38(3):21−24. doi: 10.7513/j.issn.1004-7638.2017.03.003
    [10]
    Lang R J. Ultrasonic atomization of liquids[J]. Journal of the Acoustical Society of America, 1962,34:6−8. doi: 10.1121/1.1909020
    [11]
    Zhang Huafu, Sha Hao, Wu Zhiming, et al. Recent progress on vanadium dioxide thin film at terahertz range[J]. Materials Review, 2019,33(15):2513−2523. (张化福, 沙浩, 吴志明, 等. 太赫兹波段二氧化钒薄膜的研究进展[J]. 材料导报, 2019,33(15):2513−2523. doi: 10.11896/cldb.18060112
    [12]
    Dao Rina, Kong Xinru, Zhang Haifeng, et al. Design of a tunable microwave absorber based on vanadium dioxide[J]. Laser Technology, 2019,43(4):557−562. (道日娜, 孔心茹, 章海锋, 等. 一种基于二氧化钒材料的可调谐吸波器设计[J]. 激光技术, 2019,43(4):557−562. doi: 10.7510/jgjs.issn.1001-3806.2019.04.021
    [13]
    Tang Lu, Huang Wanxia, Wen Hao, et al. Study on thermal insulation properties of nano-VO2 modified plexi glass[J]. Iron Steel Vanadium Titanium, 2019,40(5):55−60. (唐露, 黄婉霞, 文皓, 等. 纳米VO2改性有机玻璃的隔热性能研究[J]. 钢铁钒钛, 2019,40(5):55−60.
    [14]
    Mwakikunga B W, Sideras-Haddad E, Maaza M. First synthesis of vanadium dioxide by ultrasonic nebula-spray pyrolysis[J]. Optical Materials, 2007,29(5):481−487. doi: 10.1016/j.optmat.2005.10.007
    [15]
    Bharathi R, Naorem R, Umarji A M. Metal−insulator transition characteristics of vanadium dioxide thin films synthesized by ultrasonic nebulized spray pyrolysis of an aqueous combustion mixture[J]. Journal of Physics D: Applied Physics, 2015,48(30):305103. doi: 10.1088/0022-3727/48/30/305103
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (470) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return