Citation: | Gao Guangyan, Gao Likun, Rao Bing, Wang Feiwang, Shen Hairong. Current situation of resource utilization of waste acid from titanium dioxide production[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 99-108. doi: 10.7513/j.issn.1004-7638.2021.05.016 |
[1] |
Liang Y, Ding H. Mineral-TiO2 composites: Preparation and application in papermaking, paints and plastics[J]. Journal of Alloys and Compounds, 2020,844:139−156.
|
[2] |
Feltrin J, De Noni A, Hotza D, et al. Design guidelines for titania-silica-alumina ceramics with tuned anatase to rutile transformation[J]. Ceramics International, 2019,45(5):5179−5188. doi: 10.1016/j.ceramint.2018.12.026
|
[3] |
Zheng F Q, Guo Y F, Qiu G Z, et al. A novel process for preparation of titanium dioxide from Ti-bearing electric furnace slag: NH4HF2-HF leaching and hydrolyzing process[J]. Journal of Hazardous Materials, 2018,344:490−498. doi: 10.1016/j.jhazmat.2017.10.042
|
[4] |
Luo L P, Wu H Q, Yang J, et al. Effects of microwave pre-treatment on the flotation of ilmenite and titanaugite[J]. Minerals Engineering, 2020,155(15):106452.
|
[5] |
Sun Zheyu, Xia Yuan, Zhou Lei, et al. Status quo and development of titanium dioxide industry in China[J]. Coating and Protection, 2020,41(7):33−41. (孙哲宇, 夏渊, 周磊, 等. 中国钛白粉行业发展现状分析[J]. 涂层与防护, 2020,41(7):33−41.
|
[6] |
Hao X L, Lu L, Liang B, et al. Solvent extraction of titanium from the simulated ilmenite sulfuric acid leachate by trialkylphosphine oxide[J]. Hydrometallurgy, 2012,113/114:185−191. doi: 10.1016/j.hydromet.2011.12.023
|
[7] |
Fu Yijiang. Performance of China's titanium dioxide industry in 2019 and outlook[J]. China Coatings, 2020,35(5):20−23,41. (付一江. 2019年中国钛白粉行业运行情况及展望[J]. 中国涂料, 2020,35(5):20−23,41.
|
[8] |
Li Chong, Zhou Jun, Liu Yao, et al. Emission and comprehensive utilization of spent sulfuric acid in China[J]. The Chinese Journal of Process Engineering, 2018,18(S1):24−34. (李崇, 周俊, 刘瑶, 等. 我国废硫酸产生及综合利用现状[J]. 过程工程学报, 2018,18(S1):24−34. doi: 10.12034/j.issn.1009-606X.20180116
|
[9] |
Qiu H B, Wang M L, Xie Y M, et al. From trace to pure: Recovery of scandium from the waste acid of titanium pigment production by solvent extraction[J]. Process Safety and Environmental Protection, 2019,121:118−124. doi: 10.1016/j.psep.2018.10.027
|
[10] |
Li Y H, Li Q G, Zhang G Q, et al. Separation and recovery of scandium and titanium from spent sulfuric acid solution from the titanium dioxide production process[J]. Hydrometallurgy, 2018,178:1−6. doi: 10.1016/j.hydromet.2018.01.019
|
[11] |
Li Yuhua, Li Qinggang, Zhang Guiqing, et al. Recycling utilization of scandium from hydrolyzed sulfuric acid of titanium dioxide[J]. CIESC Journa, 2017,68(7):2818−2825. (李玉华, 李青刚, 张贵清, 等. 钛白水解废酸中钪的回收[J]. 化工学报, 2017,68(7):2818−2825.
|
[12] |
Zou D, Li H L, Chen J, et al. Recovery of scandium from spent sulfuric acid solution in titanium dioxide production using synergistic solvent extraction with D2EHPA and primary amine N1923[J]. Hydrometallurgy, 2020,197:105463. doi: 10.1016/j.hydromet.2020.105463
|
[13] |
Zhu Xiaobo, Niu Zepeng, Li Wang, et al. Experimental study on recovery of vanadium from titanium dioxide wastewater by solvent[J]. Rare Metals and Cemented Carbides, 2020,48(1):9−12. (朱晓波, 牛泽鹏, 李望, 等. 溶剂萃取法回收钛白废液中钒的实验研究[J]. 稀有金属与硬质合金, 2020,48(1):9−12.
|
[14] |
Ma Xueyang, Liang Bing, Lv Li, et al. Recovery of titanium by solvent extraction from waste sulfuric acid discharged in titanium dioxide production[J]. Iron Steel Vanadium Titanium, 2016,37(4):62−68. (马雪阳, 梁斌, 吕莉, 等. 从钛白废酸中萃取回收钛[J]. 钢铁钒钛, 2016,37(4):62−68.
|
[15] |
Zhang W G, Zhang T G, Li T G, et al. Basic research on the leaching behavior of vanadium-bearing steel slag with titanium white waste acid[J]. Journal of Environmental Chemical Engineering, 2021,9(1):104897. doi: 10.1016/j.jece.2020.104897
|
[16] |
Zhang G Q, Zhang T A, Lu G Z, et al. Extraction of vanadium from LD converter slag by pressure leaching process with titanium white waste acid[J]. Rare Metal Materials and Engineering, 2015,44(8):1894−1898. doi: 10.1016/S1875-5372(15)30120-X
|
[17] |
Xiong Y, Wu B, Zhu J W, et al. Preparation of magnesium hydroxide from leachate of dolomitic phosphate ore with dilute waste acid from titanium dioxide production[J]. Hydrometallurgy, 2014,142:137−144. doi: 10.1016/j.hydromet.2013.11.013
|
[18] |
Ma Guangqiang, Zou Min, Xia Dong. Experimental study on titanium concentrate leaching to prepare Ti-rich material with titanium[J]. Inorganic Chemicals Industry, 2016,48(8):67−69. (马光强, 邹敏, 夏冬. 钛白废酸加压浸出钛精矿制备富钛料实验研究[J]. 无机盐工业, 2016,48(8):67−69.
|
[19] |
Wang Jihua, Gao Jianming. Leaching of copper fom pyrite cinder using titanium white waste acid[J]. Hydrometallurgy of China, 2020,39(2):100−103. (王吉华, 高建明. 用钛白废酸从硫酸渣中浸出铜[J]. 湿法冶金, 2020,39(2):100−103.
|
[20] |
Fan Yanjin, He Hangjun, Zhang Jianfei, et al. Study on technology of scandium oxide extraction from red mud and titanium white waste acid[J]. Nonferrous Metals(Extractive Metallurgy), 2015,(5):55−57. (樊艳金, 何航军, 张建飞, 等. 钛白废酸与赤泥联合提取氧化钪的工艺研究[J]. 有色金属(冶炼部分), 2015,(5):55−57.
|
[21] |
Feng X, Jiang L Y, Song Y. Titanium white sulfuric acid concentration by direct contact membrane distillation[J]. Chemical Engineering Journal, 2016,285:101−111. doi: 10.1016/j.cej.2015.09.064
|
[22] |
Si Z T, Han D, Gu J, et al. Exergy analysis of a vacuum membrane distillation system integrated with mechanical vapor recompression for sulfuric acid waste treatment[J]. Applied Thermal Engineering, 2020,178:115516. doi: 10.1016/j.applthermaleng.2020.115516
|
[23] |
Ashoor B B, Mansour S, Giwa A, et al. Principles and applications of direct contact membrane distillation (DCMD): A comprehensive review[J]. Desalination, 2016,398:222−246. doi: 10.1016/j.desal.2016.07.043
|
[24] |
Feng X, Wu P, Jiang L Y. Titanium white waste acid concentration by DCMD: Wetting, crystallization, and fouling[J]. Desalination, 2018,440:161−174. doi: 10.1016/j.desal.2018.01.009
|
[25] |
Hu B, Ouyang J T, Jiang L Y. Influence of flocculant polyacrylamide on concentration of titanium white waste acid by direct contact membrane distillation[J]. Chinese Journal of Chemical Engineering, 2020,28(9):2483−2496. doi: 10.1016/j.cjche.2020.03.022
|
[26] |
Pang H Y, Lu R F, Zhang T, et al. Chemical dehydration coupling multi-effect evaporation to treat waste sulfuric acid in titanium dioxide production process[J]. Chinese Journal of Chemical Engineering, 2020,28(4):1162−1170. doi: 10.1016/j.cjche.2020.02.009
|
[27] |
Yadav V, Raj S K, Rathod N H, et al. Polysulfone/graphene quantum dots composite anion exchange membrane for acid recovery by diffusion dialysis[J]. Journal of Membrane Science, 2020,611:118331. doi: 10.1016/j.memsci.2020.118331
|
[28] |
Zhang X J, Zhang F, Liu M H, et al. Quaternized poly(2, 6-dimethyl-1, 4-phenylene oxide)s with zwitterion groups as diffusion dialysis membranes for acid recovery[J]. Separation and Purification Technology, 2020,250:117267. doi: 10.1016/j.seppur.2020.117267
|
[29] |
Liu Shuli, Zheng Yajie, Zhang Shouchun. Recovery of sulfuric acid from titanium white waste acid by diffusion dialysis[J]. Technology of Water Treatment, 2017,43(2):67−70,84. (刘淑莉, 郑雅杰, 张寿春. 扩散渗析法回收钛白废酸中的硫酸[J]. 水处理技术, 2017,43(2):67−70,84.
|
[30] |
Xu T W, Yang W H. Sulfuric acid recovery from titanium white (pigment) waste liquor using diffusion dialysis with a new series of anion exchange membranes — static runs[J]. Journal of Membrane Science, 2001,183(2):193−200. doi: 10.1016/S0376-7388(00)00590-1
|
[31] |
Agrawal A, Sahu K K. An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries[J]. Journal of Hazardous Materials, 2009,171(1/3):61−75.
|
[32] |
Chen F, Wang X M, Liu W Z, et al. Selective extraction of nitric and acetic acids from etching waste acid using N235 and MIBK mixtures[J]. Separation and Purification Technology, 2016,169:50−58. doi: 10.1016/j.seppur.2016.06.008
|
[33] |
Shin C H, Kim J Y, Kim J Y, et al. A solvent extraction approach to recover acetic acid from mixed waste acids produced during semiconductor wafer process[J]. Journal of Hazardous Materials, 2009,162(2/3):1278−1284.
|
[34] |
Ren X L, Wei Q F, Chen Y X, et al. Utilization of the dilute acidic sulfate effluent as resources by coupling solvent extraction–oxidation–hydrolysis[J]. Journal of Hazardous Materials, 2015,299:702−710. doi: 10.1016/j.jhazmat.2015.08.003
|
[35] |
Wei Q F, Ren X L, Guo J J, et al. Recovery and separation of sulfuric acid and iron from dilute acidic sulfate effluent and waste sulfuric acid by solvent extraction and stripping[J]. Journal of Hazardous Materials, 2016,304:1−9. doi: 10.1016/j.jhazmat.2015.10.049
|
[36] |
Hao Rongqing, Yan Yongqing. Review of circular economy pattern for S−P−Ti industry chain[J]. Sulphur Phosphorus & Bulk Materials Handling Related Engineering, 2011,(4):39−46,52. (郝荣清, 严永清. 硫−磷−钛产业链循环经济模式的评述[J]. 硫磷设计与粉体工程, 2011,(4):39−46,52. doi: 10.3969/j.issn.1009-1904.2011.04.011
|
[37] |
Bao Shutao. Industrial practice of efficient and high-value utilization of spent acid generated during titanium dioxide production[J]. Sulphuric Acid Industry, 2014,(6):20−24. (鲍树涛. 钛白废酸高效高值利用工业实践[J]. 硫酸工业, 2014,(6):20−24. doi: 10.3969/j.issn.1002-1507.2014.06.007
|
[38] |
陈玲. 钛白粉生产硫酸废液中铁的脱除过程研究[D]. 上海: 华东理工大学, 2015.
Chen Ling. Study on removal of iron from the waste sulfuric acid generated during the production of TiO2 with sulfuric acid [D]. Shanghai: East China University of Science and Technology, 2015.
|
[39] |
Ji Luojun. Review and prospect of thiophosate industry of China in ten years[J]. Sulphuric Acid Industry, 2017,(8):4−17. (纪罗军. 我国硫磷钛工业十年回顾及展望[J]. 硫酸工业, 2017,(8):4−17. doi: 10.3969/j.issn.1002-1507.2017.08.002
|
[40] |
Gavalas S, Gagaoudakis E, Katerinopoulou D, et al. Vanadium oxide nanostructured thin films prepared by aerosol spray pyrolysis for gas sensing and thermochromic applications[J]. Materials Science in Semiconductor Processing, 2019,89:116−120. doi: 10.1016/j.mssp.2018.09.008
|
[41] |
Wang Xin. Comprehensive utilization of waste acid from by-product of titanium dioxide production by sulfuric acid process[J]. Henan Science and Technology, 2017,(15):136−137. (王新. 硫酸法钛白粉生产副产品废酸的综合利用[J]. 河南科技, 2017,(15):136−137. doi: 10.3969/j.issn.1003-5168.2017.15.062
|
[42] |
Yu Wang, Zheng Yajie. Effect of recrystallization on formation of α-Fe2O3 particles prepared from ferrous sulphate by hydrothermal process[J]. Journal of Central South University(Science and Technology), 2016,47(9):2951−2957. (余旺, 郑雅杰. 硫酸亚铁的重结晶对其水热法制备α-Fe2O3粒子的影响[J]. 中南大学学报(自然科学版), 2016,47(9):2951−2957. doi: 10.11817/j.issn.1672-7207.2016.09.007
|
[43] |
周娟. 七水合硫酸亚铁在H2SO4-HCl-H2O体系中的溶解度测定及相变研究[D]. 北京: 北京化工大学, 2018.
Zhou Juan. Phase transition of FeSO4·7H2O to FeSO4·H2O in the H2SO4-HCl-H2O system by modeling solubility [D]. Beijing: Beijing University of Chemical Technology, 2018.
|
[44] |
Wu Jianchun, Lu Ruifang. Study on preparation of FeSO4·H2O from titanium white waste acid and FeSO4·7H2O[J]. Inorganic Chemicals Industry, 2018,50(6):75−77. (吴健春, 路瑞芳. 钛白副产废酸和七水硫酸亚铁制备一水硫酸亚铁的研究[J]. 无机盐工业, 2018,50(6):75−77.
|
[45] |
Zhen Mingkai, Yang Weixue. Study on producing yellow ferric oxide with by-product copperas of titanium white and waste acid[J]. China Resources Comprehensive Utilization, 2011,29(8):22−25. (郑明凯, 杨为学. 利用钛白副产绿矾和废酸制备氧化铁黄的研究[J]. 中国资源综合利用, 2011,29(8):22−25. doi: 10.3969/j.issn.1008-9500.2011.08.003
|
[46] |
Ke P C, Song K Z, Ghahreman A, et al. Improvement of scorodite stability by addition of crystalline polyferric sulfate[J]. Hydrometallurgy, 2019,185:162−172. doi: 10.1016/j.hydromet.2019.02.012
|
[47] |
Gong Jiazhu, Wu Ninglan, Lu Xiangfang, et al. Research progress of recovery and utilization technology of waste sulphuric acid from titanium dioxide[J]. Sulphuric Acid Industry, 2019,(12):6−9. (龚家竹, 吴宁兰, 陆祥芳, 等. 钛白粉废硫酸回收利用技术研究进展[J]. 硫酸工业, 2019,(12):6−9. doi: 10.3969/j.issn.1002-1507.2019.12.002
|
[48] |
Tao Houdong, Ma Zhengcheng, Qi Fei. Industrial practice of high efficiency and high value utilization of titanium white waste acid[J]. China Resources Comprehensive Utilization, 2019,37(5):79−81. (陶厚东, 马征程, 齐飞. 钛白废酸高效高值利用工业实践[J]. 中国资源综合利用, 2019,37(5):79−81. doi: 10.3969/j.issn.1008-9500.2019.05.025
|