Citation: | Chen Yuyong, Wu Jingxi. Research and advances in processing, working, microstructure, properties and industrial application of β-solidifying TiAl alloy[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 1-16. doi: 10.7513/j.issn.1004-7638.2021.06.001 |
[1] |
Hu H, Wu X Z, Wang R, et al. Phase stability, mechanical properties and electronic structure of TiAl alloying with W, Mo, Sc and Yb: first-principles study[J]. Journal of Alloys and Compounds, 2016,658:689−696. doi: 10.1016/j.jallcom.2015.10.270
|
[2] |
Ostrovskaya O, Badini C, Baudana G, et al. Thermogravimetric investigation on oxidation kinetics of complex Ti-Al alloys[J]. Intermetallics, 2018,93:244−250. doi: 10.1016/j.intermet.2017.09.020
|
[3] |
Qiu C H, Liu Y, Huang L, et al. Tuning mechanical properties for β(B2)-containing TiAl intermetallics[J]. Transactions of Nonferrous Metals Society of China, 2012,22:2593−2603. doi: 10.1016/S1003-6326(11)61505-7
|
[4] |
Jiang H T, Zeng S W, Zhao A M, et al. Hot deformation behavior of β phase containing γ-TiAl alloy[J]. Materials Science and Engineering A, 2016,661:160−167. doi: 10.1016/j.msea.2016.03.005
|
[5] |
Raji S A, Popoola A, Pityana S L, et al. Characteristic effects of alloying elements on β solidifying titanium aluminides: A review[J]. Heliyon, 2020,6(7):e04463. doi: 10.1016/j.heliyon.2020.e04463
|
[6] |
Chen W, Li Z. Additive manufacturing of titanium aluminides[J]. Additive Manufacturing for the Aerospace Industry, 2019,11:235−263.
|
[7] |
Mccullough C, Valencia J J, Levi C G, et al. Phase equilibria and solidification in Ti-Al alloys[J]. Acta Metallurgica, 1989,37(5):1321−1336. doi: 10.1016/0001-6160(89)90162-4
|
[8] |
Oehring M, Stark A, Paul J D H, et al. Microstructural refinement of boron-containing β-solidifying γ-titanium aluminide alloys through heat treatments in the β phase field[J]. Intermetallics, 2013,32:12−20. doi: 10.1016/j.intermet.2012.08.010
|
[9] |
Erdely P, Staron P, Stark A, et al. In situ and atomic-scale investigations of the early stages of γ precipitate growth in a supersaturated intermetallic Ti-44Al-7Mo solid solution[J]. Acta Materialia, 2019,164:110−121. doi: 10.1016/j.actamat.2018.10.042
|
[10] |
Zhang Y, Wang X P, Kong F T, et al. Microstructure, texture and mechanical properties of Ti-43Al-9V-0.2Y alloy hot-rolled at various temperatures[J]. Journal of Alloys and Compounds, 2019,777:795−805. doi: 10.1016/j.jallcom.2018.10.362
|
[11] |
Zhang Y, Wang X P, Kong F T, et al. A high-performance β-solidifying TiAl alloy sheet: Multi-type lamellar microstructure and phase transformation[J]. Materials Characterization, 2018,138:136−144. doi: 10.1016/j.matchar.2018.02.005
|
[12] |
Zhang Y, Wang X P, Kong F T, et al. A high-performance β-stabilized Ti-43Al-9V-0.2Y alloy sheet with a nano-scaled antiphase domain[J]. Materials Letters, 2018,214:182−185. doi: 10.1016/j.matlet.2017.12.002
|
[13] |
Zhang D D, Chen Y Y, Zhang G Q, et al. Hot deformation behavior and microstructural evolution of PM Ti43Al9V0.3Y with fine equiaxed γ and B2 grain microstructure[J]. Materials, 2020,13(4):896. doi: 10.3390/ma13040896
|
[14] |
Liu G H, Li T R, Wang X Q, et al. Effect of alloying additions on work hardening, dynamic recrystallization, and mechanical properties of Ti-44Al-5Nb-1Mo alloys during direct hot-pack rolling[J]. Materials Science and Engineering A, 2020,773:138838. doi: 10.1016/j.msea.2019.138838
|
[15] |
Hu D, Yang C, Huang A, et al. Solidification and grain refinement in Ti45Al2Mn2Nb1B[J]. Intermetallics, 2012,22:68−76. doi: 10.1016/j.intermet.2011.11.003
|
[16] |
Kuang J P, Harding R A, Campbell J. Examination of defects in gamma titanium aluminide investment castings[J]. Cast Metals, 2000,13(3):125−134. doi: 10.1080/13640461.2000.11819395
|
[17] |
Tetsui T. Development of a TiAl turbocharger for passenger vehicles[J]. Materials Science and Engineering A, 2002,329-331(1):582−588.
|
[18] |
Schwaighofer E, Clemens H, Mayer S, et al. Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase γ-TiAl based alloy[J]. Intermetallics, 2014,44:128−140. doi: 10.1016/j.intermet.2013.09.010
|
[19] |
Bazhenov V E, Kuprienko V S, Fadeev A V, et al. Influence of Y and Zr on TiAl43Nb4Mo1B0.1 titanium aluminide microstructure and properties[J]. Materials Science and Technology, 2020,36(5):548−555. doi: 10.1080/02670836.2020.1716493
|
[20] |
Schmoelzer T, Mayer S, Sailer C, et al. In situ diffraction experiments for the investigation of phase fractions and ordering temperatures in Ti-44Al-(3~7) Mo alloys[J]. Advanced Engineering Materials, 2011,13(4):306−311. doi: 10.1002/adem.201000263
|
[21] |
Zhou H T, Kong F T, Wang X P, et al. Hot deformation behavior and microstructural evolution of as-forged Ti-44Al-8Nb-(W, B, Y) alloy with nearly lamellar microstructure[J]. Intermetallics, 2017,81:62−72. doi: 10.1016/j.intermet.2017.02.026
|
[22] |
Zhou H T, Kong F T, Wu K, et al. Hot pack rolling nearly lamellar Ti-44Al-8Nb-(W, B, Y) alloy with different rolling reductions: Lamellar colonies evolution and tensile properties[J]. Materials and Design, 2017,121:202−212. doi: 10.1016/j.matdes.2017.02.053
|
[23] |
Zhou H T, Kong F T, Wang X P, et al. High strength in high Nb containing TiAl alloy sheet with fine duplex microstructure produced by hot pack rolling[J]. Journal of Alloys and Compounds, 2016,695:3495−3502.
|
[24] |
Xu R R, Li M Q. γ→β phase transformation in Ti-42.9Al-4.6Nb–2Cr[J]. Intermetallics, 2021,133:107169. doi: 10.1016/j.intermet.2021.107169
|
[25] |
Gao Q, Wang Z, Zhang L Q, et al. Joining of β-γ TiAl alloys containing high content of niobium by pulse current diffusion bonding[J]. Intermetallics, 2021,133:107184. doi: 10.1016/j.intermet.2021.107184
|
[26] |
Wu X H. Review of alloy and process development of TiAl alloys[J]. Intermetallics, 2006,14(10-11):1114−1122. doi: 10.1016/j.intermet.2005.10.019
|
[27] |
Aguilar J, Schievenbusch A, Kättlitz O. Investment casting technology for production of TiAl low pressure turbine blades-process engineering and parameter analysis[J]. Intermetallics, 2011,19:757−761. doi: 10.1016/j.intermet.2010.11.014
|
[28] |
Kothari K, Radhakrishnan R, Wereley N M. Advances in gamma titanium aluminides and their manufacturing techniques[J]. Progress in Aerospace Sciences, 2012,55:1−16. doi: 10.1016/j.paerosci.2012.04.001
|
[29] |
Gupta R K, Pant B, Sinha P P. Theory and practice of γ+α2 Ti aluminide: A review[J]. Transactions of the Indian Institute of Metals, 2014,67(2):143−165. doi: 10.1007/s12666-013-0334-y
|
[30] |
Su Y Q, Guo J J, Jia J, et al. Composition control of a TiAl melt during the induction skull melting (ISM) process[J]. Journal of Alloys and Compounds, 2002,334(1-2):261−266. doi: 10.1016/S0925-8388(01)01766-2
|
[31] |
Singh V, Mondal C, Kumar A, et al. High temperature compressive flow behavior and associated microstructural development in a β-stabilized high Nb-containing γ-TiAl based alloy[J]. Journal of Alloys and Compounds, 2019,778:573−585.
|
[32] |
Zhang S Z, Kong F T, Chen Y Y, et al. Phase transformation and microstructure evolution of differently processed Ti-45Al-9Nb-Y alloy[J]. Intermetallics, 2012,31:208−216. doi: 10.1016/j.intermet.2012.07.009
|
[33] |
Fang H Z, Chen R R, Liu Y L, et al. Effects of niobium on phase composition and improving mechanical properties in TiAl alloy reinforced by Ti2AlC[J]. Intermetallics, 2019,115:106630. doi: 10.1016/j.intermet.2019.106630
|
[34] |
Yang L, Chai L H, Liang Y F, et al. Numerical simulation and experimental verification of gravity and centrifugal investment casting low pressure turbine blades for high Nb-TiAl alloy[J]. Intermetallics, 2015,66:149−155. doi: 10.1016/j.intermet.2015.07.006
|
[35] |
Fu P X, Kang X H, Ma Y C, et al. Centrifugal casting of TiAl exhaust valves[J]. Intermetallics, 2008,16(2):130−138. doi: 10.1016/j.intermet.2007.08.007
|
[36] |
Cheng X, Yuan C, Blackburn S, et al. The influence of ZrO2 concentration in an yttria-based face coat for investment casting a Ti-45Al-2Mn-2Nb-0.2TiB alloy using a sessile drop method[J]. Metallurgical and Materials Transactions A, 2015,46(3):1328−1336. doi: 10.1007/s11661-014-2724-0
|
[37] |
Cheng X, Yuan C, Blackburn S, et al. Influence of Al2O3 concentration in yttria based face coats for investment casting Ti-45Al-2Mn-2Nb-0.2TiB alloy[J]. Materials Science and Technology, 2014,30(14):1758−1764. doi: 10.1179/1743284713Y.0000000467
|
[38] |
Trzaska Z, Bonnefont G, Fantozzi G, et al. Comparison of densification kinetics of a TiAl powder by spark plasma sintering and hot pressing[J]. Acta Materialia, 2017,135:1−13. doi: 10.1016/j.actamat.2017.06.004
|
[39] |
Cobbinah P V, Matizamhuka W R. Solid-state processing route, mechanical behaviour, and oxidation resistance of TiAl alloys[J]. Advances in Materials Science and Engineering, 2019,(2):1−21.
|
[40] |
Wang Y H, Lin J P, He Y H, et al. Microstructures and mechanical properties of Ti-45Al-8.5Nb-(W, B, Y) alloy by SPS-HIP route[J]. Materials Science and Engineering A, 2008,489:56−61.
|
[41] |
Xu G, Jiang S D, Cao F Y, et al. A β-solidifying TiAl alloy reinforced with ultra-fine Y-rich precipitates[J]. Scripta Materialia, 2021,192:55−60. doi: 10.1016/j.scriptamat.2020.10.010
|
[42] |
Jabbar H, Monchoux J P, Thomas M, et al. Improvement of the creep properties of TiAl alloys densified by spark plasma sintering[J]. Intermetallics, 2014,46:1−3. doi: 10.1016/j.intermet.2013.10.019
|
[43] |
Srivastava D, Hu D, Chang I, et al. The influence of thermal processing route on the microstructure of some TiAl-based alloys[J]. Intermetallics, 1999,7(10):1107−1112. doi: 10.1016/S0966-9795(99)00029-1
|
[44] |
Kan W, Chen B, Peng H, et al. Formation of columnar lamellar colony grain structure in a high Nb-TiAl alloy by electron beam melting[J]. Journal of Alloys and Compounds, 2019,809:151673. doi: 10.1016/j.jallcom.2019.151673
|
[45] |
Löber L, Schimansky F P, Kühn U, et al. Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy[J]. Journal of Materials Processing Technology, 2014,214(9):1852−1860. doi: 10.1016/j.jmatprotec.2014.04.002
|
[46] |
Rittinghaus S K, Ramirez V, Zielinski J, et al. Oxygen gain and aluminum loss during laser metal deposition of intermetallic TiAl[J]. Journal of Laser Applications, 2019,31(4):1−12.
|
[47] |
Imayev V M, Imayev R M, Kuznetsov A V, et al. Superplastic properties of Ti-45.2Al-3.5(Nb, Cr, B) sheet material rolled below the eutectoid temperature[J]. Materials Science & Engineering A, 2003,348(1-2):15−21.
|
[48] |
Zhang S Z, Zhang C J, Du Z X, et al. Microstructure and tensile properties of hot fogred high Nb containing TiAl based alloy with initial near lamellar microstructure[J]. Materials Science and Engineering A, 2015,642:16−21. doi: 10.1016/j.msea.2015.06.066
|
[49] |
Kim Y W, Dimiduk D M. Progress in the understanding of gamma titanium aluminides[J]. JOM, 1991,43(8):40−47. doi: 10.1007/BF03221103
|
[50] |
Cho H S, Nam S W, Hwang S K, et al. Tensile creep deformation and fracture behaviors of the lamellar TiAl alloy of elemental powder metallurgy[J]. Scripta Materialia, 1997,36(11):1295−1301. doi: 10.1016/S1359-6462(96)00493-9
|
[51] |
Carneiro T, Kim Y W. Evaluation of ingots and alpha-extrusions of gamma alloys based on Ti-45Al-6Nb[J]. Intermetallics, 2005,13(9):1000−1007. doi: 10.1016/j.intermet.2004.12.008
|
[52] |
Tetsui T, Shindo K, Kaji S, et al. Fabrication of TiAl components by means of hot forging and machining[J]. Intermetallics, 2005,13(9):971−978. doi: 10.1016/j.intermet.2004.12.012
|
[53] |
Tetsui T, Shindo K, Kobayashi S, et al. Strengthening a high-strength TiAl alloy by hot-forging[J]. Intermetallics, 2003,11(4):299−306. doi: 10.1016/S0966-9795(02)00245-5
|
[54] |
Donald S, Kim Y W. Sheet rolling and performance evaluation of beta gamma (β-γ) alloys [C]// Ti-2007 Science and Engineering. Kyoto, Japan: The Japan Institute of Metals, 2007.
|
[55] |
Xu W C, Shan D B, Zhang H, et al. Effects of extrusion deformation on microstructure, mechanical properties and hot workability of β containing TiAl alloy[J]. Materials Science and Engineering A, 2013,571:199−206. doi: 10.1016/j.msea.2013.02.005
|
[56] |
Li T R, Liu G H, Xu M, et al. Effects of hot-pack rolling process on microstructure, high-temperature tensile properties, and deformation mechanisms in hot-pack rolled thin Ti-44Al-5Nb-(Mo, V, B) sheets[J]. Materials Science and Engineering A, 2019,764:138197. doi: 10.1016/j.msea.2019.138197
|
[57] |
Gerling R, Bartels A, Clemens H, et al. Structural characterization and tensile properties of a high niobium containing gamma TiAl sheet obtained by powder metallurgical processing[J]. Intermetallics, 2004,12(3):275−280. doi: 10.1016/j.intermet.2003.10.005
|
[58] |
Das G, Kestler H, Clemens H, et al. Sheet gamma TiAl: Status and opportunities[J]. JOM, 2004,56(11):42−45. doi: 10.1007/s11837-004-0251-y
|
[59] |
Cui N, Wu Q Q, Bi K X, et al. Effect of heat treatment on microstructures and mechanical properties of a novel β-solidifying TiAl alloy[J]. Materials, 2019,12(10):1672. doi: 10.3390/ma12101672
|
[60] |
Clemens H, Wallgram W, Kremmer S, et al. Design of novel β-solidifying TiAl alloys with adjustable β/B2-phase fraction and excellent hot-workability[J]. Advanced Engineering Materials, 2008,10(8):707−713. doi: 10.1002/adem.200800164
|
[61] |
Wu Q Q, Cui N, Xiao X H, et al. Hot deformation behavior and microstructural evolution of a novel-solidifying Ti-43Al-3Mn-2Nb-0.1Y alloy[J]. Materials, 2019,12:2172. doi: 10.3390/ma12132172
|
[62] |
Su Y J, Kong F T, Chen Y Y, et al. Microstructure and mechanical properties of large size Ti-43Al-9V-0.2Y alloy pancake produced by pack-forging[J]. Intermetallics, 2013,34:29−34. doi: 10.1016/j.intermet.2012.11.004
|
[63] |
Bolz S, Oehring M, Lindemann J, et al. Microstructure and mechanical properties of a forged β-solidifying γ TiAl alloy in different heat treatment conditions[J]. Intermetallics, 2015,58:71−83. doi: 10.1016/j.intermet.2014.11.008
|
[64] |
Jiang Z G, Chen B, Liu K, et al. Effects of boron on phase transformation of high Nb containing TiAl-based alloy[J]. Intermetallics, 2007,15(5-6):738−743. doi: 10.1016/j.intermet.2006.10.028
|
[65] |
Han J C, Xiao S L, Tian J, et al. Grain refinement by trace TiB2 addition in conventional cast TiAl-based alloy[J]. Materials Characterization, 2015,106:112−122. doi: 10.1016/j.matchar.2015.05.020
|
[66] |
Han J C, Xiao S L, Tian J, et al. Microstructure characterization, mechanical properties and toughening mechanism of TiB2-containing conventional cast TiAl-based alloy[J]. Materials Science and Engineering A, 2015,645:8−19. doi: 10.1016/j.msea.2015.07.092
|
[67] |
Chen Y Y, Kong F T, Han J C, et al. Influence of yttrium on microstructure, mechanical properties and deformability of Ti-43Al-9V alloy[J]. Intermetallics, 2005,13(3-4):263−266. doi: 10.1016/j.intermet.2004.07.014
|
[68] |
Li M G, Xiao S L, Chen Y Y, et al. The effect of carbon addition on the high-temperature properties of β solidification TiAl alloys[J]. Journal of Alloys and Compounds, 2019,775:441−448. doi: 10.1016/j.jallcom.2018.09.397
|
[69] |
Fang H Z, Chen R R, Yang Y, et al. Role of graphite on microstructural evolution and mechanical properties of ternary TiAl alloy prepared by arc melting method[J]. Materials and Design, 2018,156:300−310. doi: 10.1016/j.matdes.2018.06.048
|
[70] |
Takeyama M, Kobayashi S. Physical metallurgy for wrought gamma titanium aluminides: Microstructure control through phase transformations[J]. Intermetallics, 2005,13(9):993−999. doi: 10.1016/j.intermet.2004.12.014
|
[71] |
Fang H Z, Chen R R, Chen X Y, et al. Effect of Ta element on microstructure formation and mechanical properties of high-Nb TiAl alloys[J]. Intermetallics, 2019,104:43−51. doi: 10.1016/j.intermet.2018.10.017
|
[72] |
Chen X F, Tang B, Liu Y, et al. Dynamic recrystallization behavior of the Ti-48Al-2Cr-2Nb alloy during isothermal hot deformation[J]. Progress in Natural Science:Materials International, 2019,29(5):587−594. doi: 10.1016/j.pnsc.2019.08.004
|
[73] |
Bao Y, Yang D Y, Liu N, et al. High temperature deformation behavior and processing map of hot isostatically pressed Ti-47.5Al-2Cr-2Nb-0.2W-0.2B alloy using gas atomization powders[J]. Journal of Iron and Steel Research(International), 2017,24(4):81−87.
|
[74] |
Kong F T, Cui N, Chen Y Y, et al. The hot deformation behavior of Ti-43A1-9V-Y alloy[J]. Acta Metallurgica Sinica, 2013,49(11):1363−1368. doi: 10.3724/SP.J.1037.2013.00513
|
[75] |
Li T R, Liu G H, Xu M, et al. Flow stress prediction and hot deformation mechanisms in Ti-44Al-5Nb-(Mo, V, B) alloy[J]. Materials, 2018,11(10):2044. doi: 10.3390/ma11102044
|
[76] |
Jiao Y, Wu T D, Zhang L J, et al. Effect of heat treatment on microstructure and mechanical properties of Ti48Al2Cr2Nb1B alloy[J]. Titanium Industry Progress, 2018,35(3):26−29.
|
[77] |
Sallot P, Monchoux J P, Joulié S, et al. Impact of β-phase in TiAl alloys on mechanical properties after high temperature air exposure[J]. Intermetallics, 2020,119:106729. doi: 10.1016/j.intermet.2020.106729
|
[78] |
Cui N, Wu Q Q, Bi K X, et al. Effect of multi-directional forging on the microstructure and mechanical properties of β-solidifying TiAl alloy[J]. Materials, 2019,12(9):1381. doi: 10.3390/ma12091381
|
[79] |
Mengis L, Ulrich A S, Watermeyer P, et al. Oxidation behaviour and related microstructural changes of two β0-phase containing TiAl alloys between 600 °C and 900 °C[J]. Corrosion Science, 2021,178:109085. doi: 10.1016/j.corsci.2020.109085
|
[80] |
Chen Y Y, Yang F, Kong F T, et al. Microstructure, mechanical properties, hot deformation and oxidation behavior of Ti-45Al-5.4V-3.6Nb-0.3Y alloy[J]. Journal of Alloys and Compounds, 2010,498(1):95−101. doi: 10.1016/j.jallcom.2010.03.118
|
[81] |
Lu X, He X B, Zhang B, et al. High-temperature oxidation behavior of TiAl-based alloys fabricated by spark plasma sintering[J]. Journal of Alloys and Compounds, 2009,478(1-2):220−225. doi: 10.1016/j.jallcom.2008.11.134
|
[82] |
Lin J P, Zhao L L, Li G Y, et al. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys[J]. Intermetallics, 2011,19(2):131−136. doi: 10.1016/j.intermet.2010.08.029
|
[83] |
Jiang G H, Zhao C Z, Yu J J, et al. Effect of Cr on microstructure and oxidation behavior of TiAl-based alloy with high Nb[J]. China Foundry, 2018,15(1):25−30.
|
[84] |
Liu X P, Kai Y, Wang Z X, et al. Effect of Mo-alloyed layer on oxidation behavior of TiAl-based alloy[J]. Vacuum, 2013,89(1):209−214.
|
[85] |
Pan Y, Lu X, Hayat M D, et al. Effect of Sn addition on the high-temperature oxidation behavior of high Nb-containing TiAl alloys[J]. Corrosion Science, 2020,166:108449. doi: 10.1016/j.corsci.2020.108449
|
[86] |
Vojtěch D, Popela T, Kubásek J, et al. Comparison of Nb-and Ta-effectiveness for improvement of the cyclic oxidation resistance of TiAl-based intermetallics[J]. Intermetallics, 2011,19(4):493−501. doi: 10.1016/j.intermet.2010.11.025
|
[87] |
Yao T H, Liu Y, Liu B, et al. Influence of carburization on oxidation behavior of high Nb contained TiAl alloy[J]. Surface & Coatings Technology, 2015,277:210−215.
|
[88] |
Panov D O, Sokolovsky V S, Stepanov N D, et al. Oxidation resistance and thermal stability of a β-solidified γ-TiAl based alloy after nitrogen ion implantation[J]. Corrosion Science, 2020,177:109003. doi: 10.1016/j.corsci.2020.109003
|
[89] |
Yu L D, Thongtem S, Vilaithong T, et al. Modification of tribology and high-temperature behavior of Ti-47Al intermetallic alloy nitrided by N ion implantation[J]. Surface & Coatings Technology, 2000,128(1):410−417.
|
[90] |
Zhao B, Wu J S, Sun J. Effect of nitridation on the oxidation behavior of TiAl-based intermetallic alloys[J]. Intermetallics, 2001,9:697−703. doi: 10.1016/S0966-9795(01)00054-1
|
[91] |
Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines[J]. Materials at High Temperatures, 2016,33(4-5):549−559. doi: 10.1080/09603409.2016.1183068
|