Citation: | Zhao Lidong, Zhang Youming, Zhang Jilin, Dou Jianming, Yao Jiabao. Research on prediction accuracy of the flow stress of 0Cr17Ni4Cu4Nb stainless steel based on machine learning[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 196-204. doi: 10.7513/j.issn.1004-7638.2023.04.028 |
[1] |
Wang Jianxing, Yang Gang, Zhang Zhongmo, et al. Effect of ECAP deformation on microstructure and mechanical properties of 0Cr17Ni4Cu4Nb stainless steel[J]. Journal of Plasticity Engineering, 2018,25(1):119−124. (王剑星, 杨钢, 张忠模, 等. ECAP变形对0Cr17Ni4Cu4Nb不锈钢组织与力学性能的影响[J]. 塑性工程学报, 2018,25(1):119−124.
Wang Jianxing , Yang Gang , Zhang Zhongmo, et al. Effect of ECAP deformation on microstructure and mechanical properties of 0 Cr17 Ni4 Cu4 Nb stainless steel[J]. Journal of Plasticity Engineering, 2018, 25(1): 119-124.
|
[2] |
Wang Jianxing, Yang Gang, Liu Tianmo, et al. Effect of Ni content on mechanical properties of 0Cr17Ni4Cu4Nb stainless steel[J]. Transactions of Materials and Heat Treatment, 2010,31(12):56−60. (王剑星, 杨钢, 刘天模, 等. Ni含量对0Cr17Ni4Cu4Nb不锈钢力学性能的影响[J]. 材料热处理学报, 2010,31(12):56−60.
Wang Jianxing, Yang Gang, Liu Tianmo, et al. Effect of Ni content on mechanical properties of 0 Cr17 Ni4 Cu4 Nb stainless steel[J]. Transactions of Materials and Heat Treatment, 2010, 31(12): 56-60
|
[3] |
Wang Hanxiao, Bai Bing, Zhang Changyi, et al. Micro-structure and properties analysis of nuclear power stem material 17-4PH stainless steel at different service time[J]. Nuclear Science and Engineering, 2018,38(2):318−325. (王瀚霄, 白冰, 张长义, 等. 核电阀杆材料17-4PH不锈钢服役不同时间的组织性能分析[J]. 核科学与工程, 2018,38(2):318−325. doi: 10.3969/j.issn.0258-0918.2018.02.022
Wang Hanxiao, Bai Bing, Zhang Changyi, et al. Micro-structure and properties analysis of nuclear power stem material 17-4 PH stainless steel at different service time[J]. Nuclear Science and Engineering, 2018, 38(2): 318-325. doi: 10.3969/j.issn.0258-0918.2018.02.022
|
[4] |
Huang Jing, Ma Yuan, Wang Mingjie, et al. Investigation and optimization of investment casting 0Cr17Ni4Cu3Nb stainless steel parts aero-engines[J]. Special Casting & Nonferrous Alloys, 2019,39(2):159−162. (黄静, 马原, 王明杰, 等. 精密铸造0Cr17Ni4Cu3Nb不锈钢航空发动机零件[J]. 特种铸造及有色合金, 2019,39(2):159−162.
Huang Jing, Ma Yuan, Wang Mingjie, et al. Investigation and optimization of investment casting 0 Cr17 Ni4 Cu3 Nb stainless steel parts aero-engines[J]. Special Casting & Nonferrous Alloys, 2019, 39(2): 159-162
|
[5] |
Sun Jianxin, Liu Yongsheng, Guo Baofeng, et al. Hot deformation behavior and hot processing map of 17-4PH stainless steel for oil fracturing valve box[J]. Journal of Plasticity Engineering, 2022,29(4):112−118. (孙建新, 刘永胜, 郭宝峰, 等. 石油压裂阀箱用17-4PH不锈钢热变形行为及热加工图[J]. 塑性工程学报, 2022,29(4):112−118.
Sun Jianxin, Liu Yongsheng, Guo Baofeng, et al. Hot deformation behavior and hot processing map of 17-4 PH stainless steel for oil fracturing valve box [J]. Journal of Plasticity Engineering, 2022, 29(4): 112-118.
|
[6] |
Zhang Jilin, Jia Haishen, Yi Xiangbin, et al. Effect of high temperature and high strain rate on the dynamic mechanical properties of 06Cr19Ni10 austenitic stainless steel[J]. Iron Steel Vanadium Titanium, 2022,43(1):145−151. (张继林, 贾海深, 易湘斌, 等. 高温高应变率对06Cr19Ni10奥氏体不锈钢动态力学性能的影响[J]. 钢铁钒钛, 2022,43(1):145−151.
Zhang Jilin, Jia Haishen, Yi Xiangbin, et al. Effect of high temperature and high strain rate on the dynamic mechanical properties of 06 Cr19 Ni10 austenitic stainless steel[J]. Iron Steel Vanadium Titanium, 2022, 43(1): 145-151.
|
[7] |
Jia Haishen, Zhang Jilin, Yi Xiangbin, et al. Experimental study on rheological behavior of 022Cr18Ni14Mo2 stainless steel at high temperature and high strain rate[J]. Journal of Mechanical Strength, 2022,44(3):600−606. (贾海深, 张继林, 易湘斌, 等. 高温、高应变率下022Cr18Ni14Mo2不锈钢流变行为的试验研究[J]. 机械强度, 2022,44(3):600−606.
Jia Haishen, Zhang Jilin, Yi Xiangbin, et al. Experimental study on rheological behavior of 022 Cr18 Ni14 Mo2 stainless steel at high temperature and high strain rate[J]. Journal of Mechanical Strength, 2022, 44(3): 600-606
|
[8] |
Jia Haishen, Luo Wencui, Zhang Jilin, et al. Study on dynamic mechanical properties and constitutive model of 022Cr18Ni14Mo2 stainless steel under impact load[J]. Iron Steel Vanadium Titanium, 2022,43(2):178−185. (贾海深, 罗文翠, 张继林, 等. 冲击载荷下022Cr18Ni14Mo2不锈钢动态力学特性及其本构模型研究[J]. 钢铁钒钛, 2022,43(2):178−185. doi: 10.7513/j.issn.1004-7638.2022.02.027
Jia Haishen, Luo Wencui, Zhang Jilin, et al. Study on dynamic mechanical properties and constitutive model of 022 Cr18 Ni14 Mo2 stainless steel under impact load[J]. Iron Steel Vanadium Titanium, 2022, 43(2): 178-185. doi: 10.7513/j.issn.1004-7638.2022.02.027
|
[9] |
Duan Xinmin, Sun Peiqiu, Xu Zhiqiang, et al. Study on the integral forming technology of front /rear interfacering for 0Cr17Ni4Cu4Nb[J]. Forging & Stamping Technology, 2016,41(5):44−48. (段新民, 孙培秋, 徐志强, 等. 0Cr17Ni4Cu4Nb前/后接口套圈整体成形技术研究[J]. 锻压技术, 2016,41(5):44−48.
Duan Xinmin , Sun Peiqiu , Xu Zhiqiang, et al. Study on the integral forming technology of front /rear interfacering for 0 Cr17 Ni4 Cu4 Nb[J]. Forging & Stamping Technology, 2016, 41(5): 44-48.
|
[10] |
Ding Jun, Gu Yuchuan, Huang Xia, et al. Research on prediction accuracy of flow stress of 304 stainless steel based on artificial neural network optimized by improved genetic algorithm[J]. Journal of Mechanical Engineering, 2022,58(10):78−86. (丁军, 古愉川, 黄霞, 等. 基于改进遗传算法优化人工神经网络的304不锈钢流变应力预测准确性研究[J]. 机械工程学报, 2022,58(10):78−86.
Ding Jun , Gu Yuchuan , Huang Xia, et al. Research on prediction accuracy of flow stress of 304 stainless steel based on artificial neural network optimized by improved genetic algorithm[J]. Journal of Mechanical Engineering, 2022, 58(10): 78-86.
|
[11] |
Zhong Mingjun, Wang Kelu, Lu Shiqiang, et al. Study on high temperature deformation behavior and BP neural network constitutive model of MoNb alloy[J]. Journal of Plasticity Engineering, 2020,27(12):177−182. (钟明君, 王克鲁, 鲁世强, 等. MoNb合金高温变形行为及BP神经网络本构模型研究[J]. 塑性工程学报, 2020,27(12):177−182. doi: 10.3969/j.issn.1007-2012.2020.12.025
Zhong Mingjun, Wang Kelu, Lu Shiqiang, et al. Study on high temperature deformation behavior and BP neural network constitutive model of MoNb alloy[J]. Journal of Plasticity Engineering, 2020, 27(12): 177-182. doi: 10.3969/j.issn.1007-2012.2020.12.025
|
[12] |
Luo Rui, Cao Yun, Qiu Yu, et al. Investigation of constitutive model of as-extruded spray-forming 7055 aluminum alloy based on BP artificial neural network[J]. Journal of Aeronautical Materials, 2021,41(1):35−44. (罗锐, 曹赟, 邱宇, 等. 基于BP人工神经网络喷射成形7055铝合金的本构模型[J]. 航空材料学报, 2021,41(1):35−44.
Luo Rui , Cao Yun , Qiu Yu, et al. Investigation of constitutive model of as-extruded spray-forming 7055 aluminum alloy based on BP artificial neural network[J]. Journal of Aeronautical Materials, 2021, 41(1): 35-44.
|
[13] |
Wu Xiongxi. Model of constitutive relationship and processing map for 7050 aluminum alloy based on BP neural network[J]. Special Casting & Nonferrous Alloys, 2014,34(10):1011−1015. (吴雄喜. 基于BP神经网络的7050铝合金本构关系模型及加工图[J]. 特种铸造及有色合金, 2014,34(10):1011−1015. doi: 10.15980/j.tzzz.2014.10.001
Wu Xiongxi. Model of constitutive relationship and processing map for 7050 aluminum alloy based on BP neural network[J]. Special Casting & Nonferrous Alloys, 2014, 34(10): 1011-1015. doi: 10.15980/j.tzzz.2014.10.001
|
[14] |
Zhou Feng, Wang Kelu, Lu Shiqiang, et al. Flow behavior and BP neural network high temperature constitutive model of Ti-22Al-24Nb-0.5Y alloy[J]. Journal of Materials Engineering, 2019,47(8):141−146. (周峰, 王克鲁, 鲁世强, 等. Ti-22Al-24Nb-0.5Y合金流变行为及BP神经网络高温本构模型[J]. 材料工程, 2019,47(8):141−146. doi: 10.11868/j.issn.1001-4381.2017.001548
Zhou Feng , Wang Kelu , Lu Shiqiang, et al. Flow behavior and BP neural network high temperature constitutive model of Ti-22 Al-24 Nb-0.5 Y alloy[J]. Journal of Materials Engineering, 2019, 47(8): 141-146. doi: 10.11868/j.issn.1001-4381.2017.001548
|
[15] |
Zhang Qing, Li Ping, Xue Kemin. Model of constitutive relationship for TB8 alloy based on BP neural network[J]. Forging & Stamping Technology, 2010,35(1):130−133. (张青, 李萍, 薛克敏. 基于BP神经网络的TB8合金高温本构关系模型[J]. 锻压技术, 2010,35(1):130−133.
Zhang Qing , Li Ping , Xue Kemin. Model of constitutive relationship for TB8 alloy based on BP neural network[J].
|
[16] |
Wang Tianxiang, Lu Shiqiang, Wang Kelu, et al. Flow stress behavior and artificial neural network constitutive model of Ti60 alloy[J]. Special Casting & Nonferrous Alloys, 2020,40(9):1019−1023. (王天祥, 鲁世强, 王克鲁, 等. Ti60合金的流变应力行为及人工神经网络本构模型[J]. 特种铸造及有色合金, 2020,40(9):1019−1023. doi: 10.15980/j.tzzz.2020.09.022
Wang Tianxiang, Lu Shiqiang, Wang Kelu, et al. Flow stress behavior and artificial neural network constitutive model of Ti60 alloy[J]. Special Casting & Nonferrous Alloys, 2020, 40(9): 1019-1023 doi: 10.15980/j.tzzz.2020.09.022
|
[17] |
An Zhen, Li Jinshan, Feng Yong, et al. Modeling constitutive relationship of Ti-555211 alloy by artificial neural network during high-temperature deformation[J]. Rare Metal Materials and Engineering, 2015,44(1):62−66. doi: 10.1016/S1875-5372(15)30013-8
|
[18] |
Wang Chunhui, Sun Zhihui, Zhao Jiaqing, et al. Creep deformation constitutive model of BSTMUF601 superalloy using BP neural network method[J]. Rare Metal Materials and Engineering, 2020,49(6):1885−1893.
|
[19] |
He Long, Zhang Ranyang, Zhao Gangyao, et al. Constitutive model of GH5188 superalloy based on BP neural network[J]. Special Casting & Nonferrous Alloyss, 2021,41(2):223−226. (何龙, 张冉阳, 赵刚要, 等. 基于BP神经网络的GH5188高温合金本构模型[J]. 特种铸造及有色合金, 2021,41(2):223−226. doi: 10.15980/j.tzzz.2021.02.020
He Long , Zhang Ranyang, Zhao Gangyao, et al. Constitutive model of GH5188 superalloy based on BP neural network[J]. Special Casting & Nonferrous Alloyss, 2021, 41(2): 223-226. doi: 10.15980/j.tzzz.2021.02.020
|
[20] |
Qiu Qian, Wang Kelu, Li Xin, et al. Constitutive relationship of SP700 titanium alloy based on BP neural network[J]. Journal of Plasticity Engineering, 2021,28(11):167−172. (邱仟, 王克鲁, 李鑫, 等. 基于BP神经网络的SP700钛合金本构关系[J]. 塑性工程学报, 2021,28(11):167−172.
Qiu Qian, Wang Kelu, Li Xin, et al. Constitutive relationship of SP700 titanium alloy based on BP neural network[J]. Journal of Plasticity Engineering, 2021, 28(11): 167-172.
|
[21] |
Lei Jinwen, Xue Xiangyi, Zhang Siyuan, et al. High-precision constitutive model of Ti6242s alloy hot deformation based on artificial neural network[J]. Rare Metal Materials and Engineering, 2021,50(6):2025−2032. (雷锦文, 薛祥义, 张思远, 等. 基于人工神经网络的高精度Ti6242s合金热变形本构模型[J]. 稀有金属材料与工程, 2021,50(6):2025−2032.
Lei Jinwen, Xue Xiangyi, Zhang Siyuan, et al. High-precision constitutive model of Ti6242 s alloy hot deformation based on artificial neural network[J]. Rare Metal Materials and Engineering, 2021, 50(6): 2025-2032.
|
[22] |
Zhang Pin, Yin Zhenyu, Jin Yinfu, et al. A novel hybrid surrogate intelligent model for creep index prediction based on particle swarm optimization and random forest[J]. Engineering Geology, 2020,265:628−638.
|
[23] |
Wang Jie, Cheng Xuexin, Peng Jinzhu. A weighted random forest model based on particle swarm optimization[J]. Journal of Zhengzhou University(Natural Science Edition), 2018,50(1):72−76. (王杰, 程学新, 彭金柱. 一种基于粒子群算法优化的加权随机森林模型[J]. 郑州大学学报(理学版), 2018,50(1):72−76. doi: 10.13705/j.issn.1671-6841.2017006
Wang Jie, Cheng Xuexin, Peng Jinzhu. A weighted random forest model based on particle swarm optimization[J]. Journal of Zhengzhou University(Natural Science Edition), 2018, 50(1): 72-76. doi: 10.13705/j.issn.1671-6841.2017006
|
[24] |
Breiman L. Random forests[J]. Machine Learning, 2001,45(1):5−32. doi: 10.1023/A:1010933404324
|
[25] |
Wang Weitong, Fan Haidong, Liang Chengsi, et al. Predictive modeling of NOx outlet of hedged boiler based on random forest[J]. Thermal Power Generation, 2022,51(4):96−104. (王伟同, 范海东, 梁成思, 等. 基于随机森林算法的对冲锅炉出口NOx排放量预测模型研究[J]. 热力发电, 2022,51(4):96−104.
Wang Weitong, Fan Haidong, Liang Chengsi, et al. Predictive modeling of NOx outlet of hedged boiler based on random forest[J]. Thermal Power Generation, 2022, 51(4): 96-104.
|
[26] |
Wu Xianguo, Liu Pengcheng, Chen Hongyu, et al. Prediction of concrete strength based on random forest[J]. Concrete, 2022,(1):17−20,24. (吴贤国, 刘鹏程, 陈虹宇, 等. 基于随机森林的高性能混凝土抗压强度预测[J]. 混凝土, 2022,(1):17−20,24.
Wu Xianguo, Liu Pengcheng, Chen Hongyu, et al. Prediction of concrete strength based on random forest[J]. Concrete, 2022(1): 17-20, 24.
|
[27] |
Yan Liangming, Shen Jian, Li Zhoubing, et al. Modelling for flow stress and processing map of 7055 aluminum alloy based on artificial neural networks[J]. The Chinese Journal of Nonferrous Metals, 2010,20(7):1296−1301. (闫亮明, 沈健, 李周兵, 等. 基于神经网络的7055铝合金流变应力模型和加工图[J]. 中国有色金属学报, 2010,20(7):1296−1301. doi: 10.19476/j.ysxb.1004.0609.2010.07.008
Yan Liangming, Shen Jian, Li Zhoubing, et al. Modelling for flow stress and processing map of 7055 aluminum alloy based on artificial neural networks[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(7): 1296-1301. doi: 10.19476/j.ysxb.1004.0609.2010.07.008
|
[28] |
Lv Zhe, He Lile, Lin Yuyang, et al. Parameters prediction of BP neural network based on constitutive model of aluminum alloy powder forming[J]. Hot Working Technology, 2022,51(4):46−50. (吕哲, 贺利乐, 林育阳, 等. 基于铝合金粉末成形本构模型的BP神经网络参数预测[J]. 热加工工艺, 2022,51(4):46−50.
Lv Zhe, He Lile, Lin Yuyang, et al. Parameters prediction of BP neural network based on constitutive model of aluminum alloy powder forming[J]. Hot Working Technology, 2022, 51(4): 46-50.
|
[29] |
Feng Xi, Li Qing, Quan Wei, et al. Overview of multiobjective particle swarm optimization algorithm[J]. Chinese Journal of Engineering, 2021,43(6):745−753. (冯茜, 李擎, 全威, 等. 多目标粒子群优化算法研究综述[J]. 工程科学学报, 2021,43(6):745−753.
Feng Xi, Li Qing, Quan Wei, et al. Overview ofmultiobjective particle swarm optimization algorithm[J]. Chinese Journal of Engineering, 2021, 43(6): 745-753.
|
[30] |
Li Hejian, Xu Xiaowei, Wang Ke, et al. Transformer fault diagnosis model based on particle swarm optimization and random forest[J]. Journal of Kunming University of Science and Technology(Natural Sciences), 2021,46(3):94−101. (李鹤健, 徐肖伟, 王科, 等. 基于粒子群优化随机森林的变压器故障诊断模型[J]. 昆明理工大学学报(自然科学版), 2021,46(3):94−101. doi: 10.16112/j.cnki.53-1223/n.2021.03.451
Li Hejian, Xu Xiaowei, Wang Ke, et al. Transformer fault diagnosis model based on particle swarm optimization and random forest[J]. Journal of Kunming University of Science and Technology(Natural Sciences), 2021, 46(3): 94-101. doi: 10.16112/j.cnki.53-1223/n.2021.03.451
|
[31] |
Li Le, Shu Yuechao, Wu Jianpeng, et al. A damage prediction model of wet friction elements based on PSO-BP neural network[J]. Transactions of Beijing Institute of Technology, 2022,42(12):1246−1255. (李乐, 舒越超, 吴健鹏, 等. 基于PSO-BP神经网络湿式摩擦元件损伤预测模型[J]. 北京理工大学学报, 2022,42(12):1246−1255. doi: 10.15918/j.tbit1001-0645.2021.347
Li Le, Shu Yuechao, Wu Jianpeng, et al. A damage prediction model of wet friction elements based on PSO-BP neural network[J]. Transactions of Beijing Institute of Technology, 2022, 42(12): 1246-1255. DOI: 10.15918/j.tbit1001-0645.2021.347.
|
[32] |
Fan Shengxu, Yang Chunxi, Yang Qiliang, et al. Prediction model of Panax notoginseng leaf area growth based on particle swarm-optimization random forest algorithm and meteorological data[J]. Chinese Traditional and Herbal Drugs, 2022,53(10):3103−3110. (范升旭, 杨春曦, 杨启良, 等. 基于粒子群-随机森林算法和气象数据的三七叶面积生长预测模型[J]. 中草药, 2022,53(10):3103−3110. doi: 10.7501/j.issn.0253-2670.2022.10.021
Fan Shengxu, Yang Chunxi, Yang Qiliang, et al. Prediction model of Panax notoginseng leaf area growth based on particle swarm-optimization random forest algorithm and meteorological data[J]. Chinese Traditional and Herbal Drugs, 2022, 53(10): 3103-3110. doi: 10.7501/j.issn.0253-2670.2022.10.021
|
[33] |
程学新. 粒子群优化加权随机森林算法研究[D]. 郑州: 郑州大学, 2017.
Cheng Xuexin. Research on particle swarm optimization weighted random forest algorithm[D]. Zhengzhou: Zhengzhou University, 2017.
|
[34] |
李超. 粒子群优化算法改进策略及其应用研究[D]. 无锡: 江南大学, 2021.
Li Chao. Improvement strategies for particle swarm optimization algorithms with applications[D]. Wuxi: Jiangnan University, 2021.
|
[35] |
Chang Ruohan, Cai Zhongyi, Cheng Liren, et al. Flow stress prediction model and processing map of Mg-Zn-Zr alloy based on GA-BP network[J]. Materials Reports, 2017,31(6):136−139,146. (常若寒, 蔡中义, 程丽任, 等. 基于遗传BP网络的Mg-Sm-Zn-Zr合金应力预测模型及加工图[J]. 材料导报, 2017,31(6):136−139,146. doi: 10.11896/j.issn.1005-023X.2017.06.027
Chang Ruohan, Cai Zhongyi, Cheng Liren, et al. Flow stress prediction model and processing map of Mg-Zn-Zr alloy based on GA-BP network[J]. Materials Reports, 2017, 31(6): 136-139, 146. doi: 10.11896/j.issn.1005-023X.2017.06.027
|
[36] |
Zhang Jilin, Jia Haishen, Yi Xiangbin, et al. Dynamic mechanical properties and comparison of two constitutive models for martensitic stainless steel 0Cr17Ni4Cu4Nb[J]. Materials Research Express, 2021,8(10):106501. doi: 10.1088/2053-1591/ac29f5
|
[37] |
Hu Yi, Zhang Lushan, Yuan Fuyin, et al. Prediction of concrete strength based on random forest[J]. Construction Technology, 2020,49(17):89−94. (胡毅, 张陆山, 袁福银, 等. 基于随机森林的混凝土强度预测研究[J]. 施工技术, 2020,49(17):89−94.
Hu Yi, Zhang Lushan, Yuan Fuyin, et al. Prediction of concrete strength based on random forest[J]. Construction Technology, 2020, 49(17): 89-94.
|
[38] |
Zou Dafang, Wang Zidong, Zhang Leimin, et al. Deep field relation neural network for click-through rate prediction[J]. Information Sciences, 2021,577:128−139. doi: 10.1016/j.ins.2021.06.079
|